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Abstract� We study the problem of minimizing the number of guards
positioned at a �xed height h such that each triangle on a given �	
�
dimensional triangulated terrain T is completely visible from at least
one guard	 We prove this problem to be NP �hard� and we show that
it cannot be approximated by a polynomial time algorithm within a
ratio of � � �� �

�� ln n for any � � �� unless NP � TIME�nO�log log n���
where n is the number of triangles in the terrain	 Since there exists an
approximation algorithm that achieves an approximation ratio of ln n��
our result is close to the optimum hardness result achievable for this
problem	

� Introduction and Problem De�nition

We study the problem of positioning a minimum number of guards at a �xed
height above a terrain� The terrain is given as a �nite set of points in the plane�
together with a triangulation �of its convex hull�� and a height value is associated
with each point �a triangulated irregular network �TIN�� see e�g� ��	�� The TIN
de�nes a bivariate� continuous function
 this surface in space is also called a
����dimensional terrain� A guard is a point in space above the terrain� A guard
can see a point of the terrain if the straight line segment between the guard
and the point does not intersect the terrain� That is� a particular guard point
can see some parts of the terrain� while others might be hidden� We ask for a
smallest set of guards at a �xed height that together see the whole terrain� More
precisely� we study a problem we call Terrain Cover �TC�� where the input
is a ����dimensional terrain� given as a TIN� and a height h� and where the goal
is to �nd a smallest set of guard points at height h such that every triangle can
be seen from at least one guard� We assume h to be such that all points in the
terrain are below h� Note that our requirement that each triangle be completely
covered by one guard is a particular version of the problem� dierent from the
version in which a triangle may also be covered by several guards together�
with each guard covering only a part of the triangle� This problem models a
question that arises after the liberalization of the telecommunications market
in Switzerland� Companies are planning to place communication stations above
the Swiss mountains in extremely low position � balloons at a height of �� km
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above sea level � and hold them in geo�stationary position� If we simply model
electromagnetic wave propagation at high frequencies �GHz� by straight lines of
sight� ignoring re�ection and refraction� the Terrain Cover problem asks for
a cover with the smallest number of balloons�

Related problems have been considered previously� Guarding a polygon has
been studied in depth
 for an overview� see the surveys ��	� ��	� ��	 and ��	� or any
textbook on computational geometry� More speci�cally� ��	 deals with optimum
guarding of polygons and monotone chains� When guards can only be positioned
directly on a given ����dimensional terrain that must be completely covered�
the problem of �nding the minimum number of guards is NP �hard� A shortest
watchtower for a given ��� dimensional terrain� i�e�� a single guard position closest
to the terrain �in vertical direction� that sees all of the terrain� can be found in
O�n logn� time ���	� The related problem of �nding the lowest watchtower� i�e��
a single guard position with smallest height value that sees all of the terrain�
can be solved in linear time using linear programming� Some upper and lower
bounds on the number of guards needed to guard a terrain� when guards can
only be positioned at the vertices of a ����dimensional terrain� have been derived
��	� Our problem of guarding �covering� a terrain at a �xed height has not been
studied in the literature so far� However� a previous result ��	 implies that the
Terrain Cover problem for a ����dimensional terrain can be solved in linear
time�

We proceed as follows in this paper� We �rst propose an approximation al�
gorithm for the Terrain Cover problem for a ����dimensional terrain that
guarantees an approximation ratio of lnn��� where n is the number of triangles
in the TIN� and ln is the natural logarithm�We do so by showing �in Sect� �� how
a solution of the Set Cover problem can be used to solve Terrain Cover ap�
proximately� In Set Cover �SC�� we are given a �nite universe E � fe�� � � � � eng
of elements ei and a collection of subsets S � fs�� � � � � smg with si � E� and we
need to �nd a subset S� � S of minimum cardinality such that every element ei
belongs to at least one member in S�� For ease of discussion� let E and S have
an arbitrary� but �xed order�

Our proposed approximate solution brings up the question of whether this
approximation is the best possible� It is the main contribution of this paper
to show that indeed a better approximation is impossible� up to a constant
factor� unless NP has nO�log logn��time deterministic algorithms� To this end�
we propose a reduction from SC to TC �Sect� ��� Our reduction constructs a
�planar� polygon with holes from a given instance of SC
 in a second step a
terrain is built by turning the inside of the polygon into a canyon� with steep
walls on the polygon boundary and columns for the holes� Recall that a reduction
from the problem SC to the problem TC is a pair �f� g� of two functions such
that for any instance I of SC� f�I� is an instance of TC and such that for every
feasible solution z of f�I�� g�z� is a feasible solution of I� Furthermore� if z� is an
optimum solution of f�I�� then g�z�� is an optimum solution of I� In addition�
both functions must be computable in time polynomial in the size of the SC�
instance� i�e� polynomial in jIj� We show that the reduction has all the desired
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properties and can be computed e�ciently �Sect� ��� In Sect� �� we show how
an inapproximability result for Set Cover by Feige ��	 carries over with the
proposed construction to Terrain Cover� Precisely� we prove that Terrain
Cover cannot be approximated with ratio ���� ������ lnn� for any � � �� by a
polynomial time algorithm� unless NP � TIME�nO�log logn��� Section � contains
some concluding remarks and discusses implications for other problems�

� An Approximation Algorithm

TC can be approximated with a ratio lnn � �� where n is the number of trian�
gles� by constructing an SC�instance for a given TC�instance as follows� Each
triangle is an element of the SC�instance� For each triangle determine the area
on the plane z � h from where the triangle is fully visible� This area is a poly�
gon of descriptional complexity O�n��� that can be computed in time O�n�� by
interpreting the points of the polygon as special points of an arrangement� At
each point� where two of these polygons intersect� determine which triangles are
visible from this point and de�ne the set of visible triangles as one set for SC�
There are O�n�� such intersections� Now solve the SC�instance approximately�
by applying the well�known greedy algorithm for SC� add to the solution the set
that covers a maximumnumber of elements not yet covered� This solution is not
more than lnn � � times larger than the optimum solution for SC� To see that
this reduction is approximation�ratio�preserving� consider that the n polygons
partition the plane z � h into cells� Observe that the set of visible triangles is
the same throughout the area of a cell� On the boundary of the cell� however�
a few more triangles might be visible since the boundary may be part of the
visibility area of another triangle� Therefore� any solution of the TC�instance
can be transformed to a solution of the SC�instance by moving guards that are
in the interior of a cell to an appropriate intersection point on the boundary of
the cell�

� Construction of the Reduction

In order to prove our inapproximability result for Terrain Cover �TC�� we
show how to construct an instance of TC for every instance of Set Cover �SC��
i�e�� we describe the function f of the reduction� The construction �rst leads to a
polygon �with holes�
 we then construct a terrain by simply letting the area inside
the polygon have height � and letting the area outside the polygon �including
the holes� have height h�� where h� is slightly less than h�

We construct the polygon in the x�y�plane
 Figure � shows this construction�
For the sequence of sets s�� � � � � sm� place on the horizontal line y � y� the
sequence of points ��i � ��d�� y�� from left to right for i � �� � � � �m� with d� a
constant distance between two adjacent points� For ease of description� call the
i�th point si� For each element ei � E� place on the horizontal line y � � two
points �Di� �� and �D�

i� ��� with D�
i � Di � d for a positive constant d� Arrange
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the points from left to right for i � �� � � � � n� with distances di � Di�� �D�
i to

be de�ned later� Call the points also Di and D�
i� for i � �� � � � � n�

For every element ei� draw a line g through sj and Di� where sj is the �rst
set of which ei is a member� Also draw a line g� through sl and D�

i� where sl
is the last set of which ei is a member �� Let the intersection point of g and g�

be Ii� Then draw line segments from every sk that has ei as a member to Di

and to D�
i� Two lines connecting an element ei with a set sj form a cone�like

feature
 the area between these two lines will therefore be called a cone� Call
the triangle DiIiD

�
i a spike� We have only constructed one part of the polygon

thus far� Among all the lines described� only the spikes and the line segments
of the horizontal line y � � that are between two spikes are part of the polygon
boundary� all other lines merely help in the construction� In our construction the
guards of an optimum solution will have to be placed at the points sj � therefore
we need to make sure that a guard at sj only sees the spikes of those elements
ei that are a member of the set sj � This is achieved by introducing a barrier�line
at y � b� see Fig� �� Only line segments on the horizontal line y � b that are
outside the cones are part of the polygon� We draw another barrier�line with
distance b� from the �rst barrier at y � b � b�� De�ne holes of the polygon by
connecting endpoints of line segments of the two barrier lines that belong to the
same cone�de�ning line� We call the area between the two lines at y � b and
y � b � b� �including all holes� the barrier� Thus� the barrier contains a small
part of all cones�

As a next step in the construction of the polygon� draw a vertical line segment
at x � �d��� where d�� is a positive constant� from y � � to y � y�� This line
segment is part of the polygon boundary except for the segment between the two
barrier lines� Assume that the rightmost spike is farther right than the rightmost
set� i�e� D�

n � sm� and draw another vertical line segment from y � � to y � y�
at x � D�

n� d��� again taking a detour at the barrier� The boundary lines of the
polygon de�ned so far are shown as solid lines in Fig� �� The thickness b� of the
barrier is de�ned such that all segments of all holes except for those on the line
y � b � b� are visible from two guards at P� � ��d��� �� and P� � �D�

n � d��� ���
To achieve this� the thickness b� is determined by intersecting �for each pair of
adjacent holes� a line from P� through the lower right corner of the left hole �of
the pair of adjacent holes� with a line from P� through the lower left corner of
the right hole as shown in Fig� �� Now� the barrier line y � b � b� is de�ned to
go through the lowest of all these intersection points� �We will show in Sect� �
that all intersection points actually lie on this line��

In order to simplify our proof� we attach another feature� which is called
an ear� to the corners P� and P�� forcing one guard each to P� and P�� Ears
are shown in Fig� �� Our construction aims at forcing guards for element spikes
at points for sets� but there is a potential problem if a guard is placed in an
area where two cones intersect� Such a guard may see the spikes of two elements
that are not both a member of the same set� Therefore� we duplicate the whole
construction by �ipping it over at the horizontal line y � y�� The result is shown

� We assume w	 l	 o	 g	 that each element is a member of at least two sets	
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in Fig� �� We denote the mirror image spike of ei by e�i and the mirror image
points of P�� P� by P �

�� P
�
�� It is important to note that the cones� drawn as dashed

lines in the �gures� are not part of the polygon�

Given the polygon� the terrain is de�ned by placing the interior of the polygon
at height z � � and the exterior at height z � h�� with h � h� � � and � a small
positive constant� with vertical walls along the polygon boundary� The latter
is for simplicity of the presentation only
 the terrain can easily be modi�ed to
have steep� but not vertical� walls such that the terrain actually is a continuous
function in two variables and such that our proofs still work� The resulting terrain
is triangulated in such a way that the total number of triangles is polynomial
in the input size� i�e�� the size of the SC�instance� and such that each spike is
triangulated as one triangle only� We set the parameters of the reduction as
follows� d� and y� are arbitrary positive constants
 d and b are positive constants

as well� where d � d�

� and b � 	
��y�� We let b� �

��

���
y�

�
P

n

i��
mi�� d��

d
� �

��

and Dl �

d � �d
Pl

i
�m
i for l � �� � � � � n� We will prove in Sect� � that the reduction is

feasible and runs in polynomial time with these parameter values�
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� Properties of the Reduction

��� The Reduction is Feasible

In order to make the reduction work� we request that at no point a guard sees
three or more spikes except if it is placed at some si� A guard that is placed
at some point with y�value between � and b� i�e�� between the barrier and the
spikes� sees at most one spike� provided the barrier is placed such that no cones
of two dierent elements intersect in the area below the barrier� A guard that
is placed at some point with y�value between b � b� and y�� but not equal to
y�� sees at most two spikes� provided that the spikes are placed such that no
three cones intersect in the area above the barrier� and provided that the view
of the guard is blocked by the barrier as described� A guard with y�value greater
than y� does not see any of the spikes at y � � since the view is blocked by the
barrier� A guard that is placed at some point with y�value less than �� covers at
most one spike� if it is ensured that no two spikes intersect� Thus� we need to
prove the following�

� No three cones from dierent elements intersect�
� The barrier is such that all intersections of cones from the same element ei
are below b and such that all intersections of cones from dierent elements
are above b � b� and such that all of the barrier except for the walls at
y � b� b� is visible from at least one of two guards at P� and P��

� No two spikes intersect�
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No Three Cones from Di�erent Elements Intersect

Lemma �� For el � sl� � let�

Dl � max

�
si� � sl�

si� � sj�
�Dj � d�Di� �Di � d

�

where the maximum is taken over all ei � si� and ej � sj� � for which i � j � l
and l� � j� � i� holds� Then the three cones from el to sl� � from ei to si� and
from ej to sj� � with i � j � l do not have a common intersection point�

Proof� Assume that the positions of the elements� i�e�� the values Dv� have been
set for all v � l such that no three cones intersect� We show how to set Dl

such that no three cones intersect
 see Fig� �� Let S be an intersection point
with maximum y�value among any two cones of elements to the left of el� For
each set sl� of which el is a member� draw a line through S� determine where
it intersects the line y � �� and let DS

l�l� be the x�value of this intersection

point� Let DS
l � maxl� D

S
l�l� be the maximum x�value of all intersection points

de�ned this way� For any pair of cones in �inverse position� to the left of el�
with which a cone at el forms a �triple inversion�� compute the corresponding
DS
l and let Dmax

l be the maximum DS
l � Finally� we let Dl � Dmax

l � d to
ensure that no three cones have one common intersection point at some point S�
Figure � shows the situation for an intersection and explains the notation� The

sss

iD’ D D’ D
l
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Di j j

Fig� �� Intersection of three cones

point S is the intersection point of the lines g� from si� to Di and g� from sj�

to D�
j � Simple geometric calculations yield� S � ���� t��si� � t�Di� y���� t���

with t� �
si��sj�

D�

j
�Di�si��sj�

� Let g� be the line from sl� to S� and simple geometric

calculations show� DS
l�l� �

si��sl�
si��sj�

�Dj � d�Di� �Di� The lemma follows� ut

Lemma � implies�

max�
si� � sl�

si� � sj�
�Dj � d�Di� �Di � d� � max�

md�

d�
�Dj � d� � d� � �j � l

� m�Dl�� � d� � d

Now� let Dl � m�Dl�� � d� � d� It is easy to see that this is consistent with our

de�nition of Dl� since� d� �d
Pl

j
�m
j � m��d � �d

Pl��
j
�m

j� � d� � d
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The Barrier is in Good Position

Lemma �� Any two cones that belong to the same element ei intersect only at
points with y�values at most y�

d
d�d�

�

Proof� Let ei be a member of sj and sl � and let sj � sl � The intersection point
of the lines gj from sj to D

�
i and gl from sl to Di is the point in the intersection

area of the two cones that has the largest y�value� The lemma follows by simple
geometric calculations� ut

Lemma �� Any two cones that belong to elements ei� ej � respectively� with i � j�
intersect only at points with y�values at least y�

di
di�md�

�

Proof� Let ei � si� and let ej � sj� � Furthermore� let Di � Dj and sj� � si� �
This is the exact condition for the corresponding two cones to intersect� The
intersection point of the lines g� from sj� to Dj and g� from si� to D�

i is the
point in the intersection area of the two cones with minimumy�value� The lemma
follows by simple geometric calculations� ut

Lemma �� Let b� � bd�y��b�
y��p��p���d�y��b�

� where p� and p� are the x�values of the

points P� and P�� Then all of the barrier including the segments of the cones
except for the segments at y � b � b� are visible from the two guards at P� and
P��

Proof� Let ei � sj and let G� and G� be the two points where the corresponding
cone intersects with the barrier line y � b �see Fig� ��� We �nd an expression for
y�� which is the y�value of the intersection point of the two lines from P� to G�

and from P� to G�� and the lemma follows by simple geometric calculations� ut

If we substitute b � 	
��y� and p� � p� � d � �d

Pn

i
�m
i � d�� � ��d��� �

d� �d
Pn

i
�m
i � �d�� in the equation for b�� we obtain b� �

��

���
y�

�
P

n

i��
mi�� d��

d
� �

��

�

A simple calculation shows that b� � y�
�� � if m � � and n � �� which must be the

case since there were no intersections otherwise�
Because of d � d�

� and because of Lemma �� any two cones from the same
element intersect only at points with y�value at most �

�y�� which is less than b�
Because of di � md� for all di and because of Lemma �� any two cones from
dierent elements intersect only at points with y�value at least �

�y�� which is at
most b� b��

Spikes of Two Elements Do Not Intersect

Lemma �� The spikes of any two elements do not intersect�

Proof� We determine the x�value xl of the point Il in the spike of el� Note that
xl � Dl� Simple calculations show that xl � �Dl� Since Dl�� � m�Dl � d� � d
and since we can assume that m � �� the lemma follows� ut
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��� The Reduction Preserves Optimality

In this section we will show how our reduction maps solutions of the TC�instance
f�I� to solutions of the SC�instance I� We prove that optimum solutions are
mapped to optimum solutions by showing each of both directions in a lemma�

Lemma 	� If there exists a feasible solution of the SC�instance I with k sets�
then there exists a feasible solution of the TC�instance f�I� with k � � guards�

Proof� For each set sj in the solution of the SC�instance� place a guard at
height h at point sj � and place four additional guards at height h at the points
P�� P�� P

�
�� P

�
�� ut

Lemma 
� If there exists a feasible solution of the TC�instance f�I� with k��
guards� then there exists a feasible solution of the SC�instance I with k sets�

Proof� We describe the function g that maps a solution for TC to a solution
for SC� Given a solution of the TC�instance f�I�� proceed as follows� Move the
guard that covers point A �at height �� of the ear at P� �see Fig� �� to P�� For
the remaining three ears� proceed accordingly�

Observe that a guard that covers the spike of some element ei must lie in
a cone that leads from this spike to some point sj � For each spike� there must
be at least one guard that completely covers the spike� since the spike is one
triangle in the terrain� Move each guard that lies in only one cone �i�e� not in
an intersection area of several cones� to the endpoint sj of the cone� Move all
guards that lie in an area where at least two cones intersect and that are below
the barrier line y � b �or above the barrier line y � �y� � b� to the endpoint of
sj of any of the intersecting cones�

For guards that lie in an intersection of two cones from dierent elements
eq� er� proceed as follows� Note that in this case we have one guard available
to cover two elements� Determine how the spikes e�q and e�r of the mirror image
are covered� If they are covered by a guard that lies in an intersection of two
cones from e�q and e�r� we have two guards available to cover two elements and
the problem is resolved by moving one of the two guards available to any sj
of which eq is a member� and by moving the other guard to any si of which
er is a member� If e�q is covered by a guard that lies in an intersection of the
two cones of e�q and some e�q� and if e�q� is also covered by a guard at some si�
then there are four guards available to cover four elements and the problem is
resolved by moving the available guards to appropriate si�s� If e�q is only covered
by a guard that lies in the intersection of two cones of e�q and some e�q� that is
not covered by a guard at any si and if e�r is only covered by a guard that lies in
the intersection of two cones of e�r and some e�r� that is not covered by a guard at
any si� then we let M � � fq� rg and determine how the mirror images of e�q� and
e�r� � which are eq� and er� � are covered� If they are covered by a guard that lies in
the intersection of two cones of eq� and er� � then we have four guards available to
cover four elements and the problem is resolved by moving the available guards�
If eq� is covered by a guard that lies in an intersection of two cones of eq� and
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some eq�� and if eq�� is also covered by a guard at some si or if q
�� � M �� then

we have �ve guards available to cover �ve elements and the problem is resolved
by moving the available guards� If e�q is only covered by a guard that lies in the
intersection of two cones of e�q� and some e�q�� that is not covered by a guard at
any si and if e�r� is only covered by a guard that lies in the intersection of two
cones of e�r� and some e�r�� that is not covered by a guard at any si� and if neither
q�� nor r�� are in M �� then we add q� and r� to M � and proceed accordingly for
the mirror images of eq�� and er�� � which are e�q�� and e�r�� � This procedure will
stop after n�� iterations at the latest� since two indices are added to M � in each
step� After n�� steps� the number of guards available will be greater or equal to
the number of elements to be covered�

Guards that lie inside the polygon but outside the cones cannot cover any
spikes completely and are therefore removed� Guards that lie outside the polygon
are also removed�

This rearrangement of guards correctly guards the terrain without increasing
the number of guards� A solution for the SC�instance can be determined by
including set sj in the SC solution if and only if there is a guard at point sj � ut

Lemmas � and � establish the following theorem�

Theorem �� An optimum solution of the SC�instance I contains k sets� if and
only if an optimum solution of the TC�instance f�I� contains k � � guards�

The description of the function g also shows that we are able to e�ciently �nd
an optimum solution of the SC�instance I� if we are given an optimum solution
of the TC�instance f�I��

��� The Reduction is Polynomial

Note that d� d�� y�� h� b are all constants in our reduction� The values for b� and for
all Di are computable in polynomial time and can be expressed with O�n logm�
bits� Therefore� the function f runs in time polynomial in the size of the input
SC�instance� since it only produces a polynomial number of triangles from which
each corner can be computed in polynomial time and each corner takes at most
O�n logm� bits to be expressed� It is obvious that the function g runs in polyno�
mial time� since it only involves moving around a polynomial number of guards�
If the number of guards is super�polynomial� we have an immediate transforma�
tion by selecting every set in the SC�instance� It takes polynomial time to move
each guard� since it needs to be determined in which cone�s� a guard lies�

The polynomiality of the reduction and Theorem � establish the following
corollary�

Corollary �� Terrain Cover is NP �hard�

� An Inapproximability Result

In order to get a strong inapproximability result� we take advantage of a property
of the SC�instances produced in the reduction in ��	� used to prove an optimum
inapproximability result for SC�
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Lemma �� Let N be the number of elements and let M be the number of sets
in any SC�instance produced by the reduction in ���� Then M � N	 holds�

Proof� N � mR � m��n�l according to and adopting the notation of ��	� There

are k provers� Each of them can be asked Q � n
l
� �	n� �

l
� questions� An answer

contains l
� � �l

� � �l bits� therefore there are ��l possible answers for each
question� Since for each prover and each question�answer�pair a set is added�
there are M � k �Q ���l sets� We prove that there is a constant t such that N t �
M � which is equivalent to t � logM

logN � where log denotes the base � logarithm�

To do so� observe that logM
logN � logk�logQ��l

logm�l log 	�l logn � Since Q � n
l
� �	n� �

l
� � �	n

�

� �
l
� �

we get logM
logN �

logk� l
�
log �

�
�l logn��l

logm�l log 	�l logn � Since m � n��l�� there must be a constant

c � � with m � ncl for large enough values of l� Since k � l we get logM
logN �

l� log k
l

� �
�
log �

�
�logn���

l�c logn�log	�logn� � ������logn
logn � Since n is the number of variables in the

input instance of ��Occurrence���Sat� we can assume n � �� Therefore� we
get logM

logN � �� ut

Now consider only those SC�instances that are produced in the reduction
in ��	 and their corresponding TC�instances� Then� an approximation ratio of
�� � �� lnn for any � � � cannot be guaranteed by a polynomial algorithm for
those SC�instances unless NP � TIME�nO�log logn��� since this would imply
that ��Occurrence���Sat could be solved e�ciently�

Theorem �� For all SC�instances I produced in the reduction in ��� and their
corresponding TC�instances f�I�� there is a constant c � � such that� if TC
for all considered instances can be approximated by a polynomial algorithm with
an approximation ratio better than c��� �� ln jf�I�j for any � � �� then SC for
all considered instances can be approximated with an approximation ratio better
than ��� �� lnn� where n is the number of elements in the SC�instance�

Proof� If TC can be approximated with ratio better than c��� �� ln jf�I�j� then
we can �nd an approximate solution A� for each TC�instance that satis�es
jA�j

jOPT �j � c�� � �� ln jf�I�j� where OPT � is an optimum solution of the TC�

instance� Let A � g�A�� be the corresponding approximate solution for the SC�
instance and let OPT � g�OPT �� be the optimum solution for the SC�instance�
Because of Theorem � and the description of the function g� jA�j � jAj � �

and jOPT �j � jOPT j� �� We have jAj��
jOPT j�� � c�� � �� ln jf�I�j and therefore

jAj
jOPT j � c�� � �� ln jf�I�j � �

jOPT j �c�� � �� ln jf�I�j� � �
jOPT j � With jOPT j � ��

we get jAj
jOPT j

� ��c�� � �� ln jf�I�j� We need to express the number of trian�

gles jf�I�j of the TC�instance through the number of elements n in the SC�
instance� Observe that the terrain of the TC�instance can always be triangu�
lated such that the number of triangles is O�nm�� Therefore� jf�I�j � nm� for
some constant �� Because we can assume � � n and because of Lemma �� we
get jf�I�j � nn	n � n�� �Note that if we had not restricted the set of possible
SC�instances� then m � �n would be possible and we would get a much weaker

result�� Therefore� jAj
jOPT j

� � 	 �c��� �� lnn � ��c��� �� lnn� Thus� c � �
�	 � ut

��



Thus� if TC could be approximated with a ratio ���
�	 ln jf�I�j� then SC could

be approximated with a ratio �� � �� lnn for any � � �� The contraposition of
this sentence establishes our main result� Since SC cannot be approximated with
a ratio �� � �� lnn according to ��	� we get�

Theorem �� TC cannot be approximated by a polynomial time algorithm with
an approximation ratio of ���

�	 lnn for any � � �� where n is the number of

triangles� unless NP � TIME�nO�log logn���

� Conclusion

Theorem � together with our approximation algorithm with ratio lnn � � set�
tles the approximability of Terrain Cover up to a constant factor� It shows
that Terrain Cover belongs to the relatively small family of NP �optimization
problems with an approximation threshold of a non�trivial nature� Unfortunately�
the approximation algorithm has an excessive running time and excessive space
requirements� far too much for practical purposes if we take into account that
the solution obtained might be far o the optimum� Therefore� it remains open
how to solve the Terrain Cover problem in a practical situation� Our inap�
proximability result carries over to the problem of guarding a ����dimensional
terrain with guards on the terrain� As an aside� note that the restriction that
each triangle must be covered completely by a single guard can be dropped with�
out any consequences for the inapproximability result ��	� In that case� however�
the proposed approximation algorithm cannot be applied�
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