
15IMVS Fokus Report 2011

Active Data Logger

In the project1 „Active Data Logger“ we investigate the design of embedded data acquisition systems when
focusing on mobility, efficiency and coverage of as many use cases as possible. Mobile data acquisition
systems are needed in many fields of research and productive environments that require mobility, and
they have different requirements than non-mobile data acquisition systems. After all, data collection and
analysis is a very important task, as it provides a basis for gaining knowledge and taking decisions based
on the results. The feasibility of a universal mobile data acquisition system is demonstrated with a proof-
of-concept design and implementation which covers multiple use cases.

Matthias Krebs, Christoph Stamm | matthias.krebs@fhnw.ch

Mobile� data acquisition is an integral part of
today’s research, development and productive
processes that take place in a mobile environment.
Collecting data from different sources is impor-
tant in order to perform tasks such as verifying a
hypothesis or collecting statistical data.

Imagine a cycle racing team as an example.
For the team staff, it is important to know techni-
cal and medical data of the cyclists, such as po-
sition, speed, cadence and heartbeat rate in real
time. The problem is that during a race the team’s
cyclists can be spread over a large area, there-
fore, the team’s supporting car cannot always be
close to the cyclists. Mobility is one key factor in
this case. In order to get data from the cyclists,
the team needs a data acquisition system which
is small, light and also energy-efficient, because
the bicycles should carry as little extra weight as
possible. The data acquisition system also has to
be capable of communicating with the supporting
car or the headquarters in real time, because the
staff needs to know changes of data immediately.
Because the supporting car can be several kilome-
ters away from the cyclist, a wireless connection
is required. Remote access to the data acquisition
device might also be considered in case it has to
be reconfigured or its status has to be checked.

In order to collect the required data, a data
acquisition system that fits the use case is need-
ed. Choosing the best product depends on the
requirements of the use case, the data to be col-
lected and, if predetermined, the sensors that are
used for measurements. Many commercial data
acquisition systems available on the market are
tailored to a specific use case and do not perform
well when trying to use them for a different pur-
pose. These products have a well-defined set of
features and supported input sources, which al-
lows them to perform very well within the bound-

�	 Parts of this project have been financially supported by
Scintilla AG and Förderverein Fachhochschule Nordwest-
schweiz Solothurn FVFS.

aries of their designated use case. However, this
limited feature set can be a disadvantage if the
product should be used in a different context.

In contrast to data acquisition systems intend-
ed for specific use cases, universal data acquisi-
tion systems are on the market as well. While the
former often provide specific inputs for analog or
digital sensors, depending on the intended pur-
pose, the latter generally feature a number of sim-
ple analog or digital inputs. The reason for this is
that analog sensors just need an analog voltage
to be measured and digital inputs can be used for
binary measurements such as limit switches or
photoelectric barriers. The result is a universal
data acquisition system that can be used with
virtually any analog sensor and any binary out-
put. However, the situation becomes different as
soon as advanced digital sensors are taken into
consideration. Digital sensors that feature digital
communication interfaces such as SPI or I2C are
a lot more complex to access than analog sensors
or digital inputs. They do not only require spe-
cific interfaces, but also complex communication
protocols. This makes using digital sensors much
more difficult to use in universal data acquisition
systems.

Choosing a suitable communication technolo-
gy is also important for the versatility, as the data
acquisition system requires an internet connec-
tion to communicate with distant remote stations.
Wired or wireless LAN could be integrated easily
but requires local infrastructure. GSM-based net-
working is available in most places, but has lim-
ited bandwidth, operational costs for each device
and makes remote access difficult due to private
IPs generally being used. Such a data acquisition
system cannot be accessed remotely unless a re-
lay or push services like SMS are used.

This article describes parts of a project that
has been conducted at the Institute of Mobile and
Distributed Systems, in cooperation with the In-
stitute of Micro-Electronics and the Institute of
Aerosol and Sensor Technologies [GW10], which

16 IMVS Fokus Report 2011

both focus on embedded technology. Our goal is
to create a basic framework for universal data
acquisition systems that are capable of handling
digital sensors and are usable in a mobile con-
text. We take a look at a functional prototype im-
plementing the design of a mobile universal data
acquisition system that incorporates digital sen-
sors and mobile communication technologies. The
functional prototype includes software as well as
embedded hardware components. We only take a
brief look at the hardware components and focus
on the software components instead.

Use Cases
In order to create a prototype, we need at least one
but better several concrete use cases the design
will be tested against. Two use cases are covered
in this project, demonstrating the flexibility of
the design. The first use case is the integration of
sensors into portable power tools, which allows
the manufacturer to analyze their usage profile.
This part of the project is carried out in coop-

eration with Scintilla AG, a sub-organization of
Bosch, and is a successor to the project [SC09]. In
the project of 2009, the primary focus was to cre-
ate the data analysis application Scintilla Mess-
wertdarstellung, a Java-based desktop applica-
tion that accesses a data collection database and
displays data captured from power tools graphi-
cally. This application, as seen in Figure 1, is also
used as part of our new functional prototype and
is improved in the process.

The second use case is MiniDISC [MDIS], a de-
vice being developed at the Institute of Aerosol
and Sensor Technologies, which is actually a mo-
bile data acquisition device, because it is portable
and measures fine dust particles. Both use cases
share the same data transfer protocol [GW10].

System Design
The design of the data acquisition system is mod-
ular, so it can be adapted to different use cases
more easily, with as little need to modify compo-
nents as possible.

Figure 1: The modified data analysis application

Figure 2: Data Acquisition System Design

17IMVS Fokus Report 2011

The data acquisition system is divided into four
main components:

a sensor interface, which contains sensors
suitable for the designated use case, and a se-
rial communication interface (RS485);
a data logger device, which is an embedded
computer, has a local storage (e.g. SD card)
and a communication module (GSM) attached,
captures data from the sensor interface and
transfers the data over the internet;
a data collection server, a software application
that receives data from different data logger
devices and stores the data inside a database;
a data analysis application, a software appli-
cation that is used to access the database and
evaluate the captured data. The design of this
application is entirely dependent on the spe-
cific use case.

The components, particularly the sensor interface
and data logger device, do not necessarily have to
be separate. Depending on the actual use case,
it could make sense to combine them in order to
reduce the complexity or create a more compact
design. We keep the sensor interface and the data
logger separate due to our power tool use case.
The reason is that the functional prototype we
develop is simply too big to be attached to a por-
table power tool without any serious impact on
usability.

Interfacing with Sensors
When designing a universal data acquisition sys-
tem, support for many different digital sensors
requires a standardized interface between the
sensor interface and the data logger device. The
sensors themselves might have different physi-
cal interfaces such as SPI or I2C. This is why we
use a small Atmel AVR microcontroller [AAVR]
that controls the sensors and implements a serial
communication protocol common to all sensor
interfaces. The sensor interfaces are physically
connected through an RS485 bus interface, which
allows a single master (data logger device) and
multiple slaves (sensor interfaces).

Using a microcontroller is an advantage, be-
cause only little hardware development is nec-
essary, most of the functionality is provided
through software. The AVR microcontroller is
programmed in C, as the GCC toolchain and an
Eclipse plugin are freely available. Configuration
values such as data capture intervals are stored
inside the AVR’s EEPROM, this allows the sensor
interface to be configured at runtime. The actual
sensors are queried internally by the sensor in-
terface, and the data is preprocessed and cached
in memory. When sensor data is queried through
the RS485 bus, the cached data is returned. This
takes some load off the data logger, as the sensor
data is already preprocessed on the sensor inter-
face.

1.

2.

3.

4.

Data Logger Device
The data logger device is the core component of the
data acquisition system, as it captures data from
the sensor interfaces and either stores it locally
or transmits it to a network server. Developing
a hardware platform is a time-consuming task,
this is why we have evaluated different existing
platforms based on ARM processors, as these are
widely used in embedded systems due to their
flexibility and low power consumption. We have
evaluated development boards from Roundsolu-
tions (Aarlogic), Olimex (CS-E9302) and Quick-
embed (S3C2440SBC). However, they are pure de-
veloper board and could not easily be integrated
in a custom design. The platform we have finally
chosen is the ARM-based Eddy CPU module by
SystemBase [SYSB], as it is compact, provides the
necessary connectivity and runs a customizable
embedded Linux operating system. The module
itself can be detached from the developer board
and mounted on a custom board. Applications can
be programmed in C using the GCC toolchain, and
after adding the C++ standard library (libstdc++)
to the system, even C++ can be used for develop-
ment. We choose C++, because it allows an object-
oriented approach resulting in a more structured
software design, while still being efficient enough
to run on an embedded system.

The embedded data logger software is divided
into separate threads, as we need concurrent data
retrieval and network connectivity. One thread
fetches data from the sensor interfaces in defined
intervals. The interval duration depends on how
often new data is required. To address the prob-
lem of a potential lack of a network connection,
captured data is stored temporarily and trans-
mitted as soon as a connection is available again.
We implement this functionality by pushing the
data, which is to be transmitted over the network,
into a memory-based FIFO. If no connection is
available, the data stays there until the connec-
tion is available. This is done in the same thread
as the data capture. A second thread, which han-
dles the network connection, takes data from the
FIFO when a network connection is available. Of
course, the FIFO is limited due to system memory
limitations.

Future implementation could also introduce a
persistent local storage such as an SD card. This
would allow data to be saved until a network con-
nection is available, even if the device is turned
off.

GPRS Data Transfer
A mobile data acquisition system that transmits
its acquired data automatically and independent
of its location needs a mobile network connec-
tion. We choose a GPRS connection through the
cellular network, because unlike wired or wire-

18 IMVS Fokus Report 2011

less LAN connections, it is available almost ev-
erywhere on Earth.

There are different embedded GSM modules
on the market. They primarily differ in size and
functionality. Our hardware of choice is a Telit
GM862-GPS embedded module, since it provides
all the GSM/GPRS functionality in a single pack-
age and can be controlled through a serial RS232
interface. It also includes a GPS receiver that al-
lows recording the location of the device. Other
products need a separate SIM slot or GPS receiver.
To find out whether a GPRS connection provides
enough bandwidth for the captured data being
transmitted, tests using different packet sizes
are conducted�.

 Packet size (bytes) Average upload (bps)

 32 1718

 64 2850

 128 4017

 256 5362

 512 6374

 1024 9500

These test results in Table 1 show that the data
transfer is more efficient with increasing packet
size. This is primarily due to the overhead pro-
duced as a smaller packet size requires more send
commands to be executed to transmit the same
amount of data. Additionally, the upload band-
width is limited to 9600 bps when GPRS is used.
Fortunately, this is enough for our power tool sce-
nario, as we only capture data when the power
tool is switched on.

Acquired sensor data is transmitted using a
custom data transfer protocol that uses a TCP/IP
connection. We intend to use a custom protocol,
because we need as little communication over-
head as possible in order to keep communication
costs low. The protocol we use has been developed
by Michael Glettig and Benjamin Wyrsch during
a student project [GW10]. The protocol design is
kept as simple as possible, so it can be imple-
mented in embedded systems that have only little
resources, and to minimize the amount of data
being transmitted in order to keep communica-
tion costs low.

The basic concept of the communication pro-
tocol is the distinction of use cases. Each protocol
configuration stands for one use case, which is
identified by a protocol ID. Additionally, a revision
ID allows different versions of the configuration
on the same server. The reason different versions

�	 The GM862-GPS module and a Swisscom SIM card are
used for all GPRS tests. Results may vary when other provi-
ders are used.

need to be distinguishable is that a relational da-
tabase is used to store the data, and the database
layout may change with protocol revisions, which
could result in conflicts with existing data inside
the database tables. Sensor data is divided into
data channels and sub-channels, where each data
channel consists of a group of one or more sub-
channels. A sub-channel is a single data value of
one of the common numeric data types, such as
integers of different size and floating point num-
bers. We use this structure because there are data
values that are related to each other, for example,
a GPS position always contains a latitude and a
longitude value. When data is transmitted, it is
up to the data logger which channels are trans-
mitted in a single packet, because the channels
can have different data capture intervals, and the
amount of data transmitted should be kept to a
minimum. Nevertheless, when a channel is to be
transmitted, all its sub-channels must be trans-
mitted along with it because their data values are
related. Each channel has a unique ID within a
specific protocol configuration.

Data logger devices are identified through a
unique device ID, which is a 64-bit integer. Ad-
ditionally, each device uses a password to au-
thenticate itself before transmitting data. This
provides basic security against unsolicited data
collection.
The communication protocol uses binary data pa-
ckets of the following structure:

a header (5 bytes) containing the packet ID (1
byte), the data header size (2 bytes) and the
data payload size (2 bytes)
an optional data header of variable size which
describes the structure of the data payload
a data payload of maximal 65’535 bytes

There are four types of communication packets:
The C_CTRL packet is sent to the server to con-
trol the connection. It contains a single pay-
load byte 00h (start a connection) or FFh (stop
connection). The start packet is acknowledged
by a status response. The stop packet is not

•

•

•

•

Figure 3: A typical conversation between a data logger and the
data collection server

Table 1: GPRS upload performance in relation to packet size

19IMVS Fokus Report 2011

acknowledged as the TCP socket is closed im-
mediately by the server.
The C_AUTHENT packet is sent after initiat-
ing a connection and a server response that
notifies the client that the server is ready for
authentication. It is acknowledged by a status
response telling the client that either the au-
thentication was successful, or it failed either
due to wrong credentials or an unsupported
protocol ID. There is a 1-byte data header spec-
ifying the device password length. The payload
contains the device ID, the password as well as
the protocol ID and revision (1 byte each). The
password supports ASCII format only, which
circumvents problems with Unicode handling.

•

The C_TX_DATA packet contains channel data
and is sent by the client when the connection is
established and the client has been authenti-
cated. Data packets are streamed by the client
without receiving an acknowledgement. The
data header contains an array of the channel
IDs whose data is present in the payload and
the size of each channel payload. The channel
order is arbitrary, but it must be the same as
the order of the channels in the payload. The
order of the sub-channel values is fixed.
The S_STATE is a server status response that
acknowledges C_CTRL and C_AUTHENT.

An example of a typical communication sequence
is shown in Figure 3. The communication protocol
is described in more detail in [GW10] and [MK11].

•

•

Figure 4: The software design of the data collection server

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<protocol>
	 <title>Example data acquisition protocol</title>
	 <protocol_properties>
		 <id>0x12</id>
		 <revision>0x00</revision>
		 <description>Example Data Acquisition</description>
	 </protocol_properties>
	 <data_channels>
		 <channel>
			 <id>1</id>
			 <name>Temperature</name>
			 <preserve>true</preserve>
			 <subchannel>
				 <name>T1</name>
				 <bytes>4</bytes>
				 <format>float</format>
			 </subchannel>
			 <subchannel>
				 <name>T2</name>
				 <bytes>4</bytes>
				 <format>float</format>
			 </subchannel>
		 </channel>
	 </data_channels>
</protocol>

Listing 1: An example of a protocol configuration

20 IMVS Fokus Report 2011

Data Collection
Collection of captured data is performed on a cen-
tralized system. We implement this system in the
form of a Java based stand-alone server software
that uses a TCP/IP socket to listen for incoming
data. Incoming data is processed and persistently
stored in a PostgreSQL database.

The data collection server is designed as a
truly use-case-independent tool, which means it
can be configured to match any data acquisition
scenario without the need of source code modifi-
cation. The class diagram of the server software
is shown in Figure 4. The main server class con-
tains a list of protocol configurations that are
loaded on start-up and the communication han-
dler classes that process the client connections
in a multi-threaded fashion. For each connection,
a new thread is created. This method limits the
scalability of the system, but this is no issue here,
as the primary goal is to create a basic functional
prototype that demonstrates the concepts.

Support for different use cases without code
modification is provided through protocol confi-
gurations that are loaded on start-up. These pro-
tocol configurations are described in XML for-
mat, which makes them easy to edit by hand and
parse. An example with a channel containing two
sub-channels is provided in Listing 1.

For each protocol configuration, a separate file
is placed in the protocols subdirectory of the ap-
plication directory. All protocol configurations in
this directory are loaded by the ProtocolFactory
upon start-up.

The ProtocolFactory possesses the method
IProtocol loadFromXml(String filename), which
parses a protocol configuration and creates a pro-
tocol object structure according to the class dia-
gram in Figure 4. Each protocol object contains a
list of channel objects, which each contain a list
of sub-channel objects. Their class depends on
the data type. Supported types are all signed and
unsigned integer types between 8 and 64 bits, as
well as 32-bit floating point numbers. Each proto-
col object also contains a channel map that allows
to find channels by ID quickly, and it provides a
method setupSQL(), which generates appropriate
CREATE and INSERT statements according to the
protocol object structure.

The database layout is quite simple. There is
a global device table called devices, which bears
the two fields device_id and password. Besides
the device table, only one table is required per

protocol configuration, this is the data table.
Data channels are mapped to the database as
shown in the example in Figure 5. The data table
is named data_<protocolID><protocolRevision>,
this provides a unique name for each protocol ID
and revision. The table of the example in Listing 1
would be named data_1200. Common to each data
table is a unique id field and a device_id field
that references the device table. The remaining
data fields depend on the specific protocol con-
figuration. Their naming convention is <channel-
name>_<subchannelname>, and the order of the
fields is equal to the order of channel and sub-
channel objects inside the protocol object. There
is one caveat with certain programming languag-
es and database systems, which also concerns
Java and PostgreSQL: They do not support un-
signed integer data types. This is why unsigned
integers are represented by a signed integer of
twice the width in the database, for example, an
8-bit unsigned integer is represented as a 16-bit
signed integer. For this reason, there is no un-
signed 64-bit integer, as a signed 64-bit integer is
the largest integer type available to JDBC, unless
database-specific big integers are used. Integers
are interpreted this way so no additional conver-
sion is necessary and the original number range
is available.

When a data logger opens a connection to the
data collection server, the appropriate protocol
configuration is chosen through its ID and revi-
sion. As soon as a C_TX_DATA packet is received,
the payload is processed in the method void pro-
cessData() of the protocol object. The binary pay-
load data is deserialized according to the channel
IDs and their length of each channel in bytes. De-
serialization of the sub-channel values is done by
just converting from the binary little-endian rep-
resentation of integer and floating point numbers.
By default, Java uses big-endian, but this behav-
ior can be changed by using a little-endian Byte-
Buffer. If there is a mismatch between the trans-
mitted channel length and the length defined in
the protocol configuration, the current channel
is skipped and processing is synchronized to the
beginning of the next channel.

As mentioned before, not all channels have to
be transmitted in every C_TX_DATA packet. This
requires a well-defined behavior to handle omit-
ted channels. In this implementation, each chan-
nel has a preserve flag, which is specific to the
protocol configuration on the server side. If the

Figure 5: An example of the mapping of a data channel to the database table

21IMVS Fokus Report 2011

flag is true, the sub-channel values that have
been received last are kept in memory and insert-
ed into the database, even if no data for this chan-
nel is received. If the flag is false, or if no data has
ever been received since server start-up, NULL is
inserted for all sub-channel values of the omit-
ted channel. This shows explicitly that no data
has been received from this channel. There is no
other way than to insert NULL or a valid value,
as we always have to insert a full row into the
database.

Conclusion
The functional prototype described in this arti-
cle demonstrates that the fundamental concepts
of the design are a suitable basis for a working
data acquisition system. Parts of the design,
mainly the GPRS communication protocol and
an implementation of the data collection server,
are already actively used in a larger scale test of
the MiniDISC device [MDIS]. The functional pro-
totype we have developed is capable of captur-
ing data from different sensors and propagating
the captured data to a centralized data collection
server without user interaction, therefore cover-
ing the entire process chain. Furthermore, it ful-
fills the requirement of a location-independent
and mobile system.

The sensor interfacing and data collection con-
cepts are already proven to be flexible and adapt-
able to different use cases. The configurability of
the data logger device, however, still needs to be
improved in order to allow an adaptation without
changing the embedded software on the device.
Also, the general stability, performance and reli-
ability of the system are not optimal yet.

Future Research
The research conducted during the project Active
Data Logger has given us insight into the topic
of data acquisition and general embedded hard-
ware and software development. There is still a
lot of potential for improvements that could turn
the universal data acquisition system into a prod-
uct that could be usable in a productive environ-
ment.

The Institute of Mobile and Distributed Sys-
tems is planning to acquire future projects with
industrial partners in order to continue research
on this topic. These projects could be based di-
rectly on the current research, or focus on com-
pletely new goals, while still benefiting from the
results of this research.

References
[AAVR]	 Atmel AVR: http://www.atmel.com/avr

[GW10]	 Feinstaub-Messnetzwerk. Michael Glettig, Benjamin

Wyrsch, Fachbericht HS2010, Institut für Aerosol- und

Sensortechnik, Fachhochschule Nordwestschweiz, 2011.

[MDIS]	 MiniDISC Feinstaubmessgerät: http://fierz.ch/minidisc/

[MK11]	 Active Data Logger. Matthias Krebs, Master Thesis,

FS2011, Institut für Mobile und Verteilte Systeme, Fach-

hochschule Nordwestschweiz, 2011.

http://webapache.imvs.technik.fhnw.ch/~christoph.

stamm/reports/P9_2011_ActiveDataLogger.pdf

[SC09]	 IP209 – Projekt Scintilla. Michael Bodmer, Dominic Feer,

Harun Gezici, Roland Kappeler, Adrian Roth, Michael

Schneider, Thomas Weber, Institut für Mobile und Vertei-

lte Systeme, Fachhochschule Nordwestschweiz, 2009.

[SYSB]	 Eddy CPU Module by SystemBase:

http://www.embeddedmodule.com

