
11IMVS Fokus Report 2016

Automated Testing
in the Internet of Things

This article presents a novel approach to testing distributed systems. Our automated test environment
(ATE) is created to validate the BACnet/IT building automation protocol and is easily adaptable to other do-
mains. During development of the new BACnet/IT reference implementation, we had to face several testing
challenges. Based on that, we derived requirements for the ATE. The result is a flexible and lightweight test
environment, which consists of only a few interacting components. Our ATE is able to simulate real-life
situations like a power outage or a replacement of a BACnet/IT device. Further, it allows manipulating the
behavior of BACnet/IT components during runtime. With such a test environment it is possible to automate
tests in a straightforward and efficient way.

Thomas Dobler, Artem Khatchatourov, Christoph Stamm, Wolfgang Weck | wolfgang.weck@fhnw.ch

We use more and more digital devices in every-
day life. When you turn on the lights, a tradition-
al switch actually closes an electrical circuit,
but in many modern buildings the switch sends
a digital message over a communication network
to the light, or even to several lights in the same
room. The advantages are plenty. There is not just
one light switch next to the door, but lights can
be turned on and off or even dimmed from sev-
eral places. In our lecture rooms, for instance,
one such place is the speaker’s desk. Also, lights
might be switched by automatisms, for instance,
turned off whenever sensors detect that the room
is empty or that there is enough daylight coming
in through the windows.

Switching lights is just one example of the
upcoming Internet of Things (IoT). A rapidly in-
creasing number of digital devices may increase
comfort and use energy more efficiently through
automatization and mutual interaction. With the
IoT, many relatively simple and small devices will
exchange short messages with each other, partial-
ly with real time constraints. Using Internet tech-
nology for data exchange reduces cost by avoiding
dedicated cables and by sharing software infra-
structure, such as name and addressing services
and security mechanisms.

From an engineering point of view there is an
important paradigm shift included. IoT takes us
from system architectures with a central service
embedding all intelligence and being contacted
by client devices to fully interconnected networks
where every device can contact any other device.
A system’s complexity is not embedded (and en-
capsulated) in a central node anymore, but spread
across the network of a large number of interact-
ing devices, each of which by itself can be quite
simple, though.

As engineers we want to have and to provide
evidence that our constructions meet their re-
quirements. Next to systematic (partially formal-

ized) construction methods, an important tool
for this is systematic testing of new or modified
machinery. For single-node computer systems
there are established test methods and tools. Pro-
grammers deploy unit tests to their code. When
software systems are built from source code au-
tomated tests are run, and so forth. Servers can
be tested through automatically simulated clients
and vice versa. However, these approaches only
poorly cover situations, when important system
properties rely on the cooperative interaction of
hundreds or thousands of devices and the con-
necting infrastructure.

In this paper we describe our automated test-
ing environment for IoT in the application domain
of building automation. This testing environment
is one contribution of our institute in a joint CTI
project1 with FHNW's Institute of Automation and
Siemens Switzerland, Building Technologies Di-
vision. Our part in the project is reviewing, pro-
totyping, and evaluating the draft standard of
the new internet-based instance of the BACnet
protocol: BACnet/IT [BAC16]. In order to be able
to evaluate our implementation of the communi-
cation stack and with it the new BACnet/IT draft
standard, the need for an automatic tool for test-
ing has arisen.

First of all we introduce building automation
and BACnet. Then we look at two exemplary appli-
cation scenarios, raising specific testing demands.
The two scenarios shall illustrate requirements to
testing tools for BACnet/IT specifically and dis-
tributed IoT systems in general. In practice, there
are many more requirements and corresponding
test cases that can be served with the same set of
tools. Finally, we present the elements of our ATE.

Building Automation
Building automation is the (centralized) control
of a building's heating, air conditioning, lighting
1 CTI Project: Convergence of Building Automation and IT
World, KTI-Nr. 16841.1 PFES-ES

12 IMVS Fokus Report 2016

Figure 1: Measuring reaction and roundtrip time in a light swit-
ching scenario

and other systems through a building manage-
ment system.

Building automation of the future requires
flexible communication solutions. Due to the de-
velopment of costs and the spread of Internet
technologies, standard IT solutions are increas-
ingly being used. IT infrastructures and services
are currently undergoing a process of adaptation
to the new requirements of IoT by providing suit-
able protocols for the integration of devices (CoAP,
RPL, 6LoWPAN). Building automation, which uses
IT infrastructure, is also subject to this adapta-
tion process.

BACnet/IT
BACnet is a well-established standard among
building automation manufacturers. It has been
originally defined for proprietarily wired in-
frastructure to connect sensors and actors in a
building [BAC]. With the ubiquitous Internet of
today, migrating BACnet onto standard Internet
mechanisms is advantageous.

BACnet/IP allows communication via IP-based
networks, but uses IP only as a data link and often
communicates with IP broadcasts. Based on the
data link, BACnet/IP uses its own BACnet-specific
protocols on upper layers. This leads to massive
acceptance problems in the IT world and prevents
easy interoperability and integration into other
domains. These problems have been recognized
by the standardization committee and led to a
new specification.

The new BACnet/IT draft standard describes
how to implement the established application
layer based on standard Internet protocols such
as HTTPS, TLS, WebSocket, and standard Inter-
net services, such as DNS and DHCP providing a
basic communication layer for BACnet messages
[BAC16].

With BACnet/IT, building automation no lon-
ger runs its own communication infrastructure,
but becomes a guest among others on a network
with standard Internet technologies. This cuts
down operation cost and can even raise reliabil-
ity if part of the saved budget is used to operate
the common standard infrastructure with extra
redundancy. As a trade-off, building automation
must get along with configurations and restric-
tions set up by the network operators. Consider
for example a bank or another company with high
security standards as a building’s tenant. Fol-
lowing today’s best practices, the network will be
configured in zones shielded against each other
by firewalls, possibly using network access con-
trol, and so forth. Assignment of network address-
es and device names may have to follow specific
rules. Thus, the building automation devices need
to acquire essential information from responsible
IT services under more difficult conditions than
in a proprietary network.

So, one of the specific challenges is that BAC-
net/IT devices must be able to cope with all kinds
of restrictions a network operator may put on
them. At the same time they must not rely on high
service availability, because there may be no pro-
fessional network operation at all. The latter is the
case with smaller companies, when IT network-
ing is neither business critical nor part of the core
competence. The BACnet/IT draft standard tries
to cover all relevant situations within this broad
spectrum of possibilities. It defines how devices
react to specific situations.

Example 1: Speed Test
In this and in the next section we describe two
exemplary application scenarios, raising specific
testing demands. Both scenarios shall illustrate
requirements to testing tools for BACnet/IT spe-
cifically and distributed IoT systems in general.

Some IoT applications have significant real-
time requirements. In building automation these
are, for instance, those involving human observ-
able reaction to human activity or alarm trans-
missions. Consider again the introductory light
switch example: An actor triggers a light switch
and the light in the room turns on. The light bulb
(or more precisely the whole system) needs to re-
act fast enough, so that humans don’t experience
a delay, not even in a whole corridor with lots of
individual light bulbs. Hence, there are tight time
constraints specified with such scenarios. Ensur-
ing compliance with these requirements calls for
measuring time under varying circumstances,
e.g. different network loads.

Figure 1 illustrates this test case. There is a
flow of messages between two BACnet/IT control-
lers. One controller is connected to a light switch
and the other to a light source. The two deltas
mark time spans we want to measure.

Measurements must be repeated under dif-
ferent conditions with varying network load and
bandwidth or in different topologies. This allows
comparing results to determine how network con-
ditions affect the performance. Having to run the
same tests many times raises the need to program

13IMVS Fokus Report 2016

Figure 2: BDS load after a power outage

the scenario to be run and measured so that it can
be executed automatically over and over again.
Further, the various environments in which the
scenario shall be run must be set up and config-
ured automatically. Without such support, broad
band testing would simply be too expensive.

Example 2: Power Failure
Rarely occurring scenarios as a power outage,
for instance, may have high impact, ranging from
considerable cost to life threatening. Hence, it is
especially important to simulate such situations
during testing rather than waiting for them to
occur in a live setting. As an example, you may
consider a temporary power outage in a building.
Some devices of the building automation system
will stop to operate, while others will continue to
work, based on resilient power supply, such as a
local battery. Further, the network infrastructure
may be inhibited so that communication channels
between devices close down.

It is up to the application programs being run
by the individual – temporarily disconnected – de-
vices to cope with such a situation and to prevent
major disaster. This, however, is not the topic we
are concerned with in this example. We are inter-
ested in what happens, when power comes back
again and both the network and some temporarily
powerless devices start to recover. The problem
then is, that many devices will restart their com-
munication at the same moment, synchronized by
electricity becoming available again simultane-
ously everywhere.

In such moments, specific network services be-
come bottlenecks, because they receive requests
from each device trying to integrate itself into the
system. Consider for instance, name services, re-
sponsible for mapping device and service names
to actual network addresses. The BACnet stan-
dard requires devices (re-)entering a network to
announce their availability together with the ap-
plication domain services they offer. This involves
sending a registration message to a specific BAC-
net directory server (BDS), which cooperates with
a standard domain name services (DNS).

Usually, devices are integrated into and re-
moved from the system one by one, so that the
BDS can easily handle these registrations. Having
many devices synchronized through simultane-
ous power up will put the BDS and the network
under unusual stress. Figure 2 illustrates this
specific situation.

It is fairly easy to imagine similar stress sit-
uations with other IoT applications also, just be-
cause of the sheer number of devices interacting.
Forced synchronization, can have various causes,
e.g. a fire alarm that triggers a whole number of
devices like sprinklers and safety lighting.

Of course, the BACnet/IT draft standard has
foreseen such situations and prescribes count-

er measures, such as deferring the registration
messages for a randomly selected time span. Our
protocol stack implements this. Still, engineering
standards require not only to verify such mea-
sures but also to quantify the load on bottleneck
units as well as the duration until the system re-
covers to normal operation. On top of this, it is
of interest, how many registration requests are
dropped by the BDS due to overload.

To run tests that can produce relevant data
requires many (such as hundreds) devices to si-
multaneously send out a message. Connecting a
hundred physical devices to a single power socket
and power them up together might be possible but
would be a costly and inflexible solution. Virtu-
alization is simpler and cheaper. Simulating the
synchronized power up situation requires auto-
matically triggering many such virtual devices
to send out specific messages at the same time.
This process must be programmed (scripted) and
invoked during the test. In addition, a stored test
procedure will also lead to reproducible test re-
sults.

Requirements to a Test Environment
The two examples above illustrate a set of re-
quirements to an automated test environment for
IoT systems in general and our specific BACnet
case especially:
• Devices must be manipulated: Many test sce-

narios require some degree of invasive ac-
tion on the devices forming the system under
test. Some scenarios involve devices entering
or leaving a system, such as described in the
power failure context above, so they must be
deployed and run with specific configura-
tions or halted. An actual application must be
mocked to initiate message transmissions. To
measure time intervals, respective instrumen-
tation must be injected.

• Tests must be controlled from a single work-
place: Testing an IoT system involves operating
several devices in coordination. A small num-
ber of devices could be put together in a rack
or on a table and be controlled physically. This
does not work anymore when many devices are

14 IMVS Fokus Report 2016

Figure 3: Overview of the components of our Automated Test Environment (ATE)

tween specific network events. These events
can be protocolled in a log file, which can later
be pulled from the device to the central work-
place for evaluation.

Related Work
Surprisingly, there are only a few frameworks
available for testing distributed networks:
• Java Device Test Suite [JDTS]: It is designed for

testing embedded mobile devices. It is rather
a monitor for an embedded device on the net-
work than a framework for distributed testing
of these devices.

• TETWorks [TET]: It is designed for distributed
testing and has support for different languag-
es and platforms. Unfortunately, it does not
allow reading of system parameters, which is
imperative for our needs. However, the soft-
ware is well documented and its approach is a
good base for an extended tool.

None of these tools suits our needs, so we decided
to implement our own Automated Test Environ-
ment (ATE). It is designed specifically for BACnet/
IT, but our approach can be used in any building
automation domain. We decided to base our envi-
ronment on the approach of TETWorks. So, if you
are familiar with TETWorks, then you will recog-
nize some of its components in our new test envi-
ronment.

Automated Test Environment
Our ATE depicted in Figure 3 allows us to deploy,
start and control virtual devices in the cloud as
well as in a laboratory and it simplifies logging
and visualization of logging data. It consists of
five major components: An Orchestrator to man-
age operation of BACnet/IT devices on the net-
work, a Logger to collect status and event updates
from these devices visualized by a Monitor, and a

involved. Some tests and measurements, such
as load testing, require coordinated access to
a very large number of devices. This should be
controlled from a single controlling workplace,
managing all devices on the network including
nodes in the infrastructure.

• IoT systems under test must be scalable: De-
pending on the application area, IoT systems
vary in size. Even building automation sys-
tems may range from a few controllers to large
amounts of devices. Depending on what to test
or to measure, infrastructure from a private
home LAN to an enterprise network with ded-
icated DNS and an aggressive firewall setup
must be set up. The testing environment needs
to scale from a few – maybe even physical de-
vices – to large amounts of virtual entities.

• Reproducible tests must be programmed:
There are two reasons, why test procedures
must be repeated. First, the same tests may
have to be run with varying parameters, such
as a different number of devices, different net-
work capacity, etc. Second, tests are not just a
one-time shot to prove an implementation to be
correct, but they are used as regression tests
during further development and change. If for
each test a lot of steps have to be repeated man-
ually, the process becomes cumbersome and
error-prone. Hence, test procedures should be
written as automatically executable programs.

• System data of devices must be accessible: As
the examples show, there is a need to collect
various data on individual devices during test-
ing. For instance, testing with the power out-
age scenario, we would like to measure CPU
load, memory usage, number of open connec-
tions, and so on. This requires accessibility of
the respective system data. For the first exam-
ple from above, we need to measure time be-

15IMVS Fokus Report 2016

network node including the two other major com-
ponents: Domain Host and Spy.

A network node might be a virtual or physical
machine containing one or more Domain Hosts
(e.g BACnet/IT hosts). Each of these Domain Hosts
can contain one or more BACnet/IT devices.

Virtual BACnet/IT devices usually do not pro-
duce traffic on the network because they are not
programmed to play the role of a real device. Thus,
communication must be invoked manually by the
Orchestrator through the Spy, which serves as an
intermediate interface. In the following sections
we describe each of these components in more de-
tail.

The Orchestrator plays an important role in
simplifying automated testing in an IoT environ-
ment. It has been designed to fulfill some of the re-
quirements listed above: running and controlling
reproducible tests from a single workplace. With
dozens of network nodes it is cumbersome to log
in individually and to deploy devices manually.
This is a common problem in cloud administra-
tion and there are many solutions that solve this
problem for general use. However, our Orchestra-
tor is more powerful than common cloud adminis-
tration tools, because it is able to access Domain
Hosts even after their deployment.

Some tests require coordinated teamwork from
up to hundred BACnet/IT devices on the network.
This calls for automated test procedures, which
force devices to exchange messages in a fixed
sequence. A test written as a procedure can be
uniquely identified for documentation purpos-
es and used in other network environments with
different hosts. Doing so will produce comparable
results, which can be used to compare setups and
implementations.

Orchestrator
The Orchestrator is a centralized tool, which man-
ages physical or virtual devices on the network.
It controls these devices by sending commands of
two different types over Websocket connections:
• Maintenance Commands trigger operations

such as starting a tcpdump process or deploy-
ing a new Domain Host with given configura-
tion. These commands are run by Spies and do
not concern any BACnet/IT communication.

• BACnet Commands are directed towards the
Domain Host. These commands trigger BAC-
net/IT devices to send messages to other phys-
ical or virtual BACnet/IT devices in the same
domain.

The Orchestrator has two modes of operation:
• Interactive mode: A command line interface

provides commands to control the devices and
other nodes on the network. This mode of oper-
ation is not suited for large tests.

• Test Procedures are Groovy scripts of more
complex command sequences. Such scripts au-

tomate coordination between BACnet/IT devic-
es on the network. These test procedures have
to be independent from each other to avoid
complications, e.g. identifier collisions. So it is
good practice to terminate all used devices af-
ter a test is completed.

The test procedures are divided into three main
stages:
• Setup deploys all required devices for the test

with a given configuration.
• Test contains the commands that must be exe-

cuted to run the test including the evaluation
of its results.

• Teardown phase contains the cleanup routine
for the test.

Spy
The Spy is a Java application running on a virtual
or physical machine. It is an interface for the Or-
chestrator to communicate with the Domain Host.
Additionally, it manages operations on the node.
These include deploying and halting of Domain
Hosts and executing shell commands for reading
CPU and memory usage and starting tcpdump,
which is used to write network communication to
a file. Afterwards, this file is sent to the Orches-
trator for evaluation.

In essence, the Spy is a program that boots
with the computer and controls some of the oper-
ations in the host system. It is similar to malware
on a compromised computer in a botnet. To mit-
igate potential damage, we have limited a Spy’s
scope of shell commands to a few that can not do
any harm to the host. This however, does not mean
that no damage can be done to the network: A Spy
can easily flood the network with traffic produced
by a BACnet/IT device. Indeed, a DDoS attack on
one BACnet/IT device conducted by other BACnet/
IT devices is a relevant test case.

Domain Host
To run a test environment with distributed inter-
acting devices a well-defined setup is needed. For
example, a BACnet/IT system includes a BDS, a
directory service, and a number of devices. These
devices maintain objects and properties, which
have to be configured. Further behavior has to be
configured as well. For example, the configuration
tells a device it has to announce itself to the BDS.

During development and testing of the BAC-
net/IT, the involved components have to be in an
initial state. Thus, we have to simplify and auto-
mate the process of making the system ready for
further tests.

A Domain Host has to fulfill two main tasks:
• It configures and starts the devices at a spe-

cific node according to a given configuration,
which defines for example the number of de-
vices and the value of their objects and prop-
erties, the IP address of the DNS, the usage of

16 IMVS Fokus Report 2016

TLS, BasicAuth or CORS during communica-
tion and so on.

• A Domin Host acts as an interface between a
Spy and the BACnet/IT devices on a node. As
described above, it receives commands sent by
a Spy, passes the commands to BACnet/IT de-
vices, and forces them to communicate accord-
ing to the received command.

Logger
The Logger receives and maintains logging data
from all Spies, Domain Hosts, BACnet/IT devic-
es and other BACnet/IT system components. It is
a nodeJS application keeping track of the events
and state changes (see Figure 4). For example, de-
vices announce themselves with the BDS, send
messages to each other, and may change the value
of their properties. Besides the devices, the com-
munication stack of a device has also a changing
state and sends logging information to the Logger,
and even the zone file entries of the DNS changes
are reported to the Logger.

Every component of the system (e.g. a Spy, a
Domain Host or even a BACnet/IT device) decides
when and what information it will send to the
Logger. After a message from another device is re-
ceived, a device may inform the Logger about that
incoming message.

Getting an overview of all the notable events
and state changes is a challenge. Observing sev-
eral standard output logs at the same time is ar-
duous and confusing. Thus, one could adjust the
logging level to standard output to get a proper
system overview, but this is inconvenient, be-
cause the logging level can differ per component
and test case. Heading this problem, our solution
is oriented towards a notification mechanism.
Whereby one designated Logger collects all the
information it receives. Communication with the
Logger is through a RESTful API.

For the definition and implementation of our
RESTful API we use Swagger [SWG]. Swagger pro-
vides a number of tools to design a RESTful API
and offers simple client and server implementa-
tions in different programming languages.

A typically RESTful API based on Swagger is
defined as follows:

/route/{entity}:
 [HTTP METHOD]:
 parameters:
 - name: [name]
 in: path
 type: string
 responses:
 200:
 description: [text]
 404:
 description: [text]

Our Logger stores the received data in a domain
specific data structure. For BACnet/IT, for exam-
ple, we use the data structure described in Figure
5. With this data structure, we are able to keep
track of all the important and notable events and
state changes during the runtime of our BACnet/
IT implementation.

The same RESTful API is also used by a Moni-
tor. In our understanding a Monitor is just an ap-
plication that analyzes and visualizes data from
the Logger.

Monitor
Any Monitor implementation can request the
current state from the Logger in JavaScript Ob-
ject Notation (JSON). In our implementation of
the Monitor we use D3 to create sunburst charts
[D3JS]. D3 is a popular JavaScript library for data
visualization. Sunburst charts fit very well to our
1-to-m entity relations of the data representation
and let one zoom into areas of interest.

In Figure 6 we display information we care
about during development and testing of the BAC-
net/IT system. On the innermost ring we see Hosts

Figure 4: Simple architecture of the Logger

Figure 5: Data structure of the Logger applied to the domain of
BACnet/IT

17IMVS Fokus Report 2016

and DNS. A host contains several devices, e.g.
Host2 contains devices 2001 and 2002, a device
may have several objects, e.g. device 2001 has ob-
jects Obj:0-2, and finally an object consists of sev-
eral properties (visualized in the outermost ring).
In the upper part of Figure 6, the current state of
the DNS of the system is fanned out.

Example 1 using the ATE
The diagram in Figure 7 describes how the ATE
can be applied to the Speed Test example present-
ed previously. For the test we need two instanc-
es running Ubuntu with a Spy installed on each

one. One instance will host a BACnet/IT device
simulating a light switch (A1) and the other will
pose as an Internet connected light bulb (B2). The
goal is to measure the roundtrip time of a request
(BACnet/IT message) from A1 to B2 including a
response from B2 to A1 confirming a successful
execution of that request. The test is stored in a
Groovy script (called procedure). It can be run not
only in local environment but over different net-
works or even over Internet. Also, additional traf-
fic may be generated on the network to simulate
real-world conditions.

The test consists of the following steps:
A. The Orchestrator deploys the Spy on a remote

machine via SSH in case the Spy is not already
deployed. The SSH tunnel is closed afterwards
and all further communication is carried out
over Websocket.

B. Maintenance Commands signal both Spies to
deploy a Domain Host with a configuration de-
livered as a serialized object.

C. Maintenance Commands to Spies invoke the
tcpdump process.

D. A BACnet Command to the Spy on instance 1
enters the Domain Host and triggers a BAC-
net message dispatch from device A1 to B2 on
instance 2. The message destination is only
provided as a BACnet/IT device identifier. A1
doesn’t know the destination IP address yet
and resolves the identifier via DNS. Finally,
this message is sent to the returned IP address.

E. When a response has been received, the test is
completed, the tcpdump processes are termi-
nated, and the tcpdump file is delivered by the
Spy to the Orchestrator, which analyzes both
files and computes the test results.

Figure 7: Communication flow initialized by the Orchestrator in example 1 (time measurements)

DNS

PTR

SRV
TXT

PTR

SRV
TXT

PTR

SRV
TXT

PTR

SRV
TXT

PTR
SRV
TXT

PTR
SRV
TXT

PTR
SRV
TXT

Hosts

Host0

1001

Obj:0

an
alo

gO
utputR

ed

0.0

Obj:1

analogOutputG
reen

0.0

Obj:2

analogOutputBlue
0.0

1002

Obj:0

analogOutputRed100.0

Obj:1

analogOutputGreen
200.0

Obj:2

analogOutputBlue
0.0

->1001->1001->1001->1001->2001->2001

Ho
st

1

10
01

O
bj

:0

analogO
utputRed

0.
0

O
bj

:1
an

al
og

O
ut

pu
tG

re
en

0.
0

O
bj

:2

an
al

og
O

ut
pu

tB
lu

e0.
0

10
02

O
bj

:0

an
al

og
O

ut
pu

tR
ed10

0.
0

Ob
j:1

an
al

og
Ou

tp
ut

Gr
ee

n20
0.

0
Ob

j:2

an
al

og
Ou

tp
ut

Bl
ue

0.
0

->
10

01

->
10

01

->
10

01

->
10

01

->
10

01

->1
00

1

->3
00

1

Host2

20
01

O
bj

:0

no
rm

al
An

al
og

 O
ut

pu
t 0

an
al

og
O

ut
pu

tR
ed

An
al

og
 O

ut
pu

t
tr

ue
12

3.
0

[P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l),

 P
rio

rit
yV

al
ue

(n
ul

lV
al

ue
=N

ul
l)]

0.
0

[fa
lse

, f
al

se
, f

al
se

, t
ru

e]
Obj

:1

no
rm

al
An

al
og

 O
ut

pu
t 1

an
alo

gO
ut

pu
tG

re
en

An
alo

g O
ut

pu
t

tru
e

0.0 [P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

), P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

), P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

), P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

), P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

), P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

), P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

), P
rio

rit
yV

alu
e(

nu
llV

alu
e=

Null
), P

rio
rit

yV
alu

e(
nu

llV
alu

e=
Null

)]

0.0
[fa

lse
, fa

lse
, fa

lse
, tr

ue]

Obj:2

norm
al

Analog Output 2

analogOutputBlue

Analog Output

tru
e

0.0
[Priority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null), P
riority

Value(nullValue=Null)]

0.0
[false, false, false, tru

e]

2002

Obj:0

analogOutputRed

100.0

Obj:1
analogOutputGreen

200.0

Obj:2
analogOutputBlue

0.0

->1001
->1001
->2001
->2001

Host3

2001

Obj:0

analogOutputRed
0.0 Obj:1

analogOutputGreen
0.0

Obj:2

analogOutputBlue 0.0

2002

Obj:0

analogOutputRed
100.0

Obj:1

analogOutputGreen
200.0

Obj:2

analogOutputBlue 0.0

->1001
->1001

Host4

2001

Obj:0

analogOutputRed
0.0

Obj:1
analogOutputGreen

0.0
Obj:2analogOutputBlue

0.0

2002Obj:0
analogOutputRed

100.0
Obj:1

analogOutputGreen
200.0 Obj:2

analogOutputBlue
0.0

->1001
->1001

->1002

Host5 3001

Obj:0

normal
Analog Output 0analogOutputRedAnalog Outputtrue

0.0
[PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null)]

0.0
[false, false, false, true]Obj:1

normalAnalog Output 1

analogOutputGreen

Analog Output

true456.0[PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null)]

0.0[false, false, false, true]

Obj:2 normal

Analog Output 2

analogOutputBlue

Analog Output

true0.0[PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null), PriorityValue(nullValue=Null)]

0.0[false, false, false, true]

3002

Obj:0
analogOutputRed

100.0

O
bj:1

analogO
utputGreen

200.0

O
bj:2

analogO
utputBlue

0.0

->1001
->1001
->3001

Figure 6: Sunburst visualization of Logger data in Monitor

18 IMVS Fokus Report 2016

Example 2 using the ATE
Let us pick up the second test example explained
previously that occurs when all devices in a build-
ing power up at the same time and announce their
availability to the BDS (Figure 8). During this pro-
cess the BDS is flooded with registration requests
from hundreds of devices residing on dozens of
hosts. One can describe this massive load on the
BDS as a DDoS attack.

During the test, we deploy a BDS device and
ten Domain Hosts with ten BACnet/IT devices
each. Depending on the configuration these devic-
es may send a registration message immediately
or wait a random time span before sending a reg-
istration message to BDS. This deferred registra-
tion helps to reduce the peak load on the BDS and
avoids any dropped messages. The load is indi-
cated by CPU and memory usage, which is record-
ed during the test. After recording, the CPU and
memory usage is evaluated, and the evaluation re-
sults lead us to an improved device configuration
for this network.

The test consists of the following steps:
A. The Orchestrator starts a Spy on each instance

over SSH.
B. CPU and memory usage recording is started on

the instance hosting the BDS.
C. For the main test, Domain Hosts are deployed

on every instance. During startup, they deploy
their BACnet/IT devices and automatically
register them using the BDS.

D. The test is completed when all hundred devices
have been registered.

E. The Orchestrator collects recordings from the
BDS and evaluates the results.

Conclusions and Outlook
The Automated Test Environment presented in
this article allows us to simulate real life sce-
narios like a power outage, BACnet/IT component
failures, malfunction of involved network compo-
nents or a complete rearrangement of the exist-
ing IT network. Without this ATE we wouldn’t be
able to automate tests in IoT systems in such a
straightforward and efficient way.

In the future we want to improve the stability
of our ATE and develop a first adaption to anoth-
er use case beyond building automation. Further,
continuous integration plugins and automated
system sanity checks would extend the function-
ality and a graphical user interface could improve
the ATE experience.

References
[BAC] BACnet, official website: http://www.bacnet.org/

[BAC16] Proposed Addendum bj to Standard 135-2016, BACnet® - A

Data Communication Protocol for Building Automation and

Control Networks, December 2016. http://www.bacnet.org/

Addenda/Add-135-2016bj-apr1-draft-2_chair_approved.pdf

[D3JS] Data-Driven Documents: https://d3js.org/

[JDTS] Java Device Test Suite: http://www.oracle.com/

technetwork/java/embedded/javame/javadevice-140362.

html

[SWG] SWAGGER open source framework: http://swagger.io/

[TET] The Test Environment Toolkit, TETWorks on the web:

http://tetworks.opengroup.org/

Figure 8: Communication flow initialized by the Orchestrator in example 2 (power outage)

