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Abstract. We study the problem of minimizing the number of guards
positioned at a fixed height h such that each triangle on a given 2.5-
dimensional triangulated terrain 7' is completely visible from at least
one guard. We prove this problem to be N P-hard, and we show that
it cannot be approximated by a polynomial time algorithm within a
ratio of (1 — e)%lnn for any € > 0, unless NP C T]ME(nO(bg log ")),
where n is the number of triangles in the terrain. Since there exists an
approximation algorithm that achieves an approximation ratio of Inn+1,
our result is close to the optimum hardness result achievable for this
problem.

1 Introduction and Problem Definition

We study the problem of positioning a minimum number of guards at a fixed
height above a terrain. The terrain is given as a finite set of points in the plane,
together with a triangulation (of its convex hull), and a height value is associated
with each point (a triangulated irregular network (TIN), see e.g. [5]). The TIN
defines a bivariate, continuous function; this surface in space is also called a
2.5-dimensional terrain. A guard is a point in space above the terrain. A guard
can see a point of the terrain if the straight line segment between the guard
and the point does not intersect the terrain. That is, a particular guard point
can see some parts of the terrain, while others might be hidden. We ask for a
smallest set of guards at a fixed height that together see the whole terrain. More
precisely, we study a problem we call TERRAIN COVER (TC), where the input
is a 2.5-dimensional terrain, given as a TIN, and a height h, and where the goal
is to find a smallest set of guard points at height A such that every triangle can
be seen from at least one guard. We assume h to be such that all points in the
terrain are below h. Note that our requirement that each triangle be completely
covered by one guard is a particular version of the problem, different from the
version in which a triangle may also be covered by several guards together,
with each guard covering only a part of the triangle. This problem models a
question that arises after the liberalization of the telecommunications market
in Switzerland. Companies are planning to place communication stations above
the Swiss mountains in extremely low position - balloons at a height of 20 km
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above sea level - and hold them in geo-stationary position. If we simply model
electromagnetic wave propagation at high frequencies (GHz) by straight lines of
sight, ignoring reflection and refraction, the TERRAIN COVER problem asks for
a cover with the smallest number of balloons.

Related problems have been considered previously. Guarding a polygon has
been studied in depth; for an overview, see the surveys [6], [7], [8] and [9], or any
textbook on computational geometry. More specifically, [2] deals with optimum
guarding of polygons and monotone chains. When guards can only be positioned
directly on a given 1.5-dimensional terrain that must be completely covered,
the problem of finding the minimum number of guards is N P-hard. A shortest
watchtower for a given 2.5 dimensional terrain, i.e., a single guard position closest
to the terrain (in vertical direction) that sees all of the terrain, can be found in
O(nlogn) time [10]. The related problem of finding the lowest watchtower, i.e.,
a single guard position with smallest height value that sees all of the terrain,
can be solved in linear time using linear programming. Some upper and lower
bounds on the number of guards needed to guard a terrain, when guards can
only be positioned at the vertices of a 2.5-dimensional terrain, have been derived
[1]. Our problem of guarding (covering) a terrain at a fixed height has not been
studied in the literature so far. However, a previous result [6] implies that the
TERRAIN COVER problem for a 1.5-dimensional terrain can be solved in linear
time.

We proceed as follows in this paper. We first propose an approximation al-
gorithm for the TERRAIN COVER problem for a 2.5-dimensional terrain that
guarantees an approximation ratio of In n+ 1, where n is the number of triangles
in the TIN, and In is the natural logarithm. We do so by showing (in Sect. 2) how
a solution of the SET COVER problem can be used to solve TERRAIN COVER ap-
proximately. In SET CovER (SC), we are given a finite universe £ = {e1,- -+, e, }
of elements e; and a collection of subsets S = {s1,--+, s;,} with s; C F, and we
need to find a subset S’ C 5 of minimum cardinality such that every element e;
belongs to at least one member in 5’. For ease of discussion, let F and S have
an arbitrary, but fixed order.

Our proposed approximate solution brings up the question of whether this
approximation is the best possible. It is the main contribution of this paper
to show that indeed a better approximation is impossible, up to a constant
factor, unless NP has n@U081087)_time deterministic algorithms. To this end,
we propose a reduction from SC to TC (Sect. 3). Our reduction constructs a
(planar) polygon with holes from a given instance of SC; in a second step a
terrain is built by turning the inside of the polygon into a canyon, with steep
walls on the polygon boundary and columns for the holes. Recall that a reduction
from the problem SC to the problem TC is a pair (f,g) of two functions such
that for any instance I of SC, f([I) is an instance of TC and such that for every
feasible solution z of f(I), g(z) is a feasible solution of I. Furthermore, if z’ is an
optimum solution of f(I), then g(z’) is an optimum solution of I. In addition,
both functions must be computable in time polynomial in the size of the SC-
instance, i.e. polynomial in |I|. We show that the reduction has all the desired



properties and can be computed efficiently (Sect. 4). In Sect. 5, we show how
an inapproximability result for SET CoVER by Feige [4] carries over with the
proposed construction to TERRAIN COVER. Precisely, we prove that TERRAIN
COVER cannot be approximated with ratio ((1 —€)/35) Inn, for any € > 0, by a
polynomial time algorithm, unless NP C TIME(nO(IOgIOg”)). Section 6 contains
some concluding remarks and discusses implications for other problems.

2 An Approximation Algorithm

TC can be approximated with a ratio Inn 4+ 1, where n is the number of trian-
gles, by constructing an SC-instance for a given TC-instance as follows: Each
triangle is an element of the SC-instance. For each triangle determine the area
on the plane z = h from where the triangle is fully visible. This area is a poly-
gon of descriptional complexity O(n?), that can be computed in time O(n*) by
interpreting the points of the polygon as special points of an arrangement. At
each point, where two of these polygons intersect, determine which triangles are
visible from this point and define the set of visible triangles as one set for SC.
There are O(n®) such intersections. Now solve the SC-instance approximately,
by applying the well-known greedy algorithm for SC: add to the solution the set
that covers a maximum number of elements not yet covered. This solution is not
more than Inn 4+ 1 times larger than the optimum solution for SC. To see that
this reduction is approximation-ratio-preserving, consider that the n polygons
partition the plane z = & into cells. Observe that the set of visible triangles is
the same throughout the area of a cell. On the boundary of the cell, however,
a few more triangles might be visible since the boundary may be part of the
visibility area of another triangle. Therefore, any solution of the TC-instance
can be transformed to a solution of the SC-instance by moving guards that are
in the interior of a cell to an appropriate intersection point on the boundary of
the cell.

3 Construction of the Reduction

In order to prove our inapproximability result for TERRAIN CovER (TC), we
show how to construct an instance of TC for every instance of SET CovER (SC),
i.e., we describe the function f of the reduction. The construction first leads to a
polygon (with holes); we then construct a terrain by simply letting the area inside
the polygon have height 0 and letting the area outside the polygon (including
the holes) have height ', where R’ is slightly less than h.

We construct the polygon in the z —y-plane; Figure 1 shows this construction.
For the sequence of sets sy,---, sm,, place on the horizontal line y = yo the
sequence of points ((¢ — 1)d’, yo) from left to right for i = 1,---,m, with d’ a
constant distance between two adjacent points. For ease of description, call the
t-th point s;. For each element e; € E, place on the horizontal line y = 0 two
points (D;,0) and (D}, 0), with D} = D; + d for a positive constant d. Arrange



the points from left to right for ¢ = 1,-- -, n, with distances d; = D;y; — D! to
be defined later. Call the points also D; and D}, fori =1,---,n.

For every element e;, draw a line g through s; and D;, where s; is the first
set of which e; is a member. Also draw a line ¢’ through s; and D}, where s;
is the last set of which ¢; is a member L. Let the intersection point of ¢ and ¢’
be I;. Then draw line segments from every s; that has e; as a member to D;
and to Di. Two lines connecting an element e; with a set s; form a cone-like
feature; the area between these two lines will therefore be called a cone. Call
the triangle D;I; D! a spike. We have only constructed one part of the polygon
thus far: Among all the lines described, only the spikes and the line segments
of the horizontal line y = 0 that are between two spikes are part of the polygon
boundary, all other lines merely help in the construction. In our construction the
guards of an optimum solution will have to be placed at the points s;, therefore
we need to make sure that a guard at s; only sees the spikes of those elements
e; that are a member of the set s;. This is achieved by introducing a barrier-line
at y = b, see Fig. 1. Only line segments on the horizontal line y = b that are
outside the cones are part of the polygon. We draw another barrier-line with
distance ¥’ from the first barrier at y = b + ¥’. Define holes of the polygon by
connecting endpoints of line segments of the two barrier lines that belong to the
same cone-defining line. We call the area between the two lines at ¥y = b and
y = b+ b (including all holes) the barrier. Thus, the barrier contains a small
part of all cones.

As a next step in the construction of the polygon, draw a vertical line segment
at * = —d”, where d’ is a positive constant, from y = 0 to y = yo. This line
segment is part of the polygon boundary except for the segment between the two
barrier lines. Assume that the rightmost spike is farther right than the rightmost
set, i.e. DI > s,,, and draw another vertical line segment from y = 0 to y = yo
at # = D/, + d", again taking a detour at the barrier. The boundary lines of the
polygon defined so far are shown as solid lines in Fig. 1. The thickness &’ of the
barrier is defined such that all segments of all holes except for those on the line
y = b+ b are visible from two guards at Py = (—d”,0) and P, = (D), +d",0).
To achieve this, the thickness b’ is determined by intersecting (for each pair of
adjacent holes) a line from Py through the lower right corner of the left hole (of
the pair of adjacent holes) with a line from P, through the lower left corner of
the right hole as shown in Fig. 2. Now, the barrier line y = b + ¥’ is defined to
go through the lowest of all these intersection points. (We will show in Sect. 4
that all intersection points actually lie on this line.)

In order to simplify our proof, we attach another feature, which is called
an ear, to the corners P; and P,, forcing one guard each to P, and P,. Ears
are shown in Fig. 2. Our construction aims at forcing guards for element spikes
at points for sets, but there is a potential problem if a guard is placed in an
area where two cones intersect: Such a guard may see the spikes of two elements
that are not both a member of the same set. Therefore, we duplicate the whole
construction by flipping it over at the horizontal line y = yo. The result is shown

! We assume w. |. o. g. that each element is a member of at least two sets.



Fig. 1. Basic construction
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Fig. 2. Thickness of the barrier and ears

in Fig. 3. We denote the mirror image spike of e; by ¢, and the mirror image
points of Py, P, by P{, P;. It is important to note that the cones, drawn as dashed
lines in the figures, are not part of the polygon.

Given the polygon, the terrain is defined by placing the interior of the polygon
at height 2 = 0 and the exterior at height » = ', with h = A’ 4+ ¢ and § a small
positive constant, with vertical walls along the polygon boundary. The latter
is for simplicity of the presentation only; the terrain can easily be modified to
have steep, but not vertical, walls such that the terrain actually is a continuous
function in two variables and such that our proofs still work. The resulting terrain
is triangulated in such a way that the total number of triangles is polynomial
in the input size, i.e., the size of the SC-instance, and such that each spike is
triangulated as one triangle only. We set the parameters of the reduction as
follows: d’ and yq are arbitrary positive constants; d and b are positive constants
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as well, where d = %I and b = Zyo. We let b = 23

1=1
d+ 2d Zi’:l m' for [ = 1,--+,n. We will prove in Sect. 4 that the reduction is
feasible and runs in polynomial time with these parameter values.



Fig. 3. Final construction

4 Properties of the Reduction

4.1 The Reduction is Feasible

In order to make the reduction work, we request that at no point a guard sees
three or more spikes except if it is placed at some s;. A guard that is placed
at some point with y-value between 0 and b, i.e., between the barrier and the
spikes, sees at most one spike, provided the barrier is placed such that no cones
of two different elements intersect in the area below the barrier. A guard that
is placed at some point with y-value between b + &' and yg, but not equal to
Yo, sees at most two spikes, provided that the spikes are placed such that no
three cones intersect in the area above the barrier, and provided that the view
of the guard is blocked by the barrier as described. A guard with y-value greater
than yo does not see any of the spikes at y = 0 since the view is blocked by the
barrier. A guard that is placed at some point with y-value less than 0, covers at
most one spike, if it is ensured that no two spikes intersect. Thus, we need to
prove the following:

— No three cones from different elements intersect.

— The barrier is such that all intersections of cones from the same element e;
are below b and such that all intersections of cones from different elements
are above b+ b’ and such that all of the barrier except for the walls at
y = b+ is visible from at least one of two guards at P; and Ps.

— No two spikes intersect.



No Three Cones from Different Elements Intersect
Lemma 1. Fore; € sy, let:

Sg1 — 8yt

DlZmaX< (D]—l—d—DZ)—I—DZ—I—d)

Sit — S5
where the mazimum is taken over all e; € sy and e; € sy, for which ¢ < j <l
and I' < j' < i holds. Then the three cones from e; to sy, from e; to s; and
from e; to s;i, with @ < j <1 do not have a common intersection point.

Proof. Assume that the positions of the elements, i.e., the values D, , have been
set for all v < [ such that no three cones intersect. We show how to set D
such that no three cones intersect; see Fig. 4. Let S be an intersection point
with maximum y-value among any two cones of elements to the left of e;. For
each set s; of which e; is a member, draw a line through S, determine where
it intersects the line y = 0, and let DlSJ, be the z-value of this intersection
point. Let DlS = max DlSl, be the maximum z-value of all intersection points
defined this way. For any7pair of cones in “inverse position” to the left of e;,
with which a cone at e; forms a “triple inversion”, compute the corresponding
DlS and let D"®* be the maximum DlS. Finally, we let D; = D" 4 d to
ensure that no three cones have one common intersection point at some point S.
Figure 4 shows the situation for an intersection and explains the notation. The

Fig. 4. Intersection of three cones

point S is the intersection point of the lines g from s;: to D; and g from s;
to D}. Simple geometric calculations yield: S = ((1 —t1)sir + t1.D;, yo(1 — t1))
sl/—Sj/

DT Ditsu—s, Let g3 be the line from s;: to S, and simple geometric

calculations show: DlSJ, = 220(D; +d — D;) + D;. The lemma follows. m|
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Lemma 1 implies:

!

md .
(Dj —|—d—Dl)—|—Dl—|—d) SmaX(T(D]-Fd)—Fd) ,V] <

Sg1 — Sy
max(
Sg1 — Sj/

<m(Di_1+d)+d

Now, let D; = m(D;_1 +d) + d. It is easy to see that this is consistent with our
definition of Dy, since: d + 2d Zé’:l m/ = m((d + 2d Zé;ll m/) +d) +d



The Barrier is in Good Position

Lemma 2. Any two cones that belong to the same element e; intersect only at
points with y-values at most yoﬁ.

Proof. Let e; be a member of s; and s;, and let s; < s;. The intersection point
of the lines g; from s; to D} and g; from s; to D; is the point in the intersection
area of the two cones that has the largest y-value. The lemma follows by simple
geometric calculations. O

Lemma 3. Any two cones that belong to elements e;, e;, respectively, with+ < j,
intersect only at points with y-values at least yoﬁ.

Proof. Let e; € s; and let e; € s;/. Furthermore, let D; < D; and s;0 < s;/.
This is the exact condition for the corresponding two cones to intersect. The
intersection point of the lines g; from s;/ to D; and g» from s,/ to D} is the
point in the intersection area of the two cones with minimum y-value. The lemma
follows by simple geometric calculations. a

bd(yo—b
Lemma 4. Let b = m, y)hefe P1 qnd po are the x-values of the
points Py and Py. Then dll of the barrier including the segments of the cones
except for the segments at y = b+ b’ are visible from the two guards at P, and

Ps.

Proof. Let e; € 5; and let Gy and G5 be the two points where the corresponding
cone intersects with the barrier line y = b (see Fig. 2). We find an expression for
y1, which is the y-value of the intersection point of the two lines from P; to G4
and from P, to (G2, and the lemma follows by simple geometric calculations. O

If we substitute b = 15—23/0 and p; —p1 = d+2dY 0, mi + d” - (=d") =
d+2dY°"_  m' + 2d"” in the equation for b, we obtain b’ = 12790

) i
A simple calculation shows that & < %2, if m > 2 and n > 2, which must be the

127
case since there were no intersections otherwise.
1
Because of d = % and because of Lemma 2, any two cones from the same

element intersect only at points with y-value at most %yo, which is less than b.
Because of d; > md’ for all d; and because of Lemma 3, any two cones from
different elements intersect only at points with y-value at least %yo, which is at
most b+ b'.

Spikes of Two Elements Do Not Intersect

Lemma 5. The spikes of any two elements do not intersect.

Proof. We determine the z-value z; of the point I; in the spike of ¢;. Note that
z; > Dy;. Simple calculations show that #; < 2D;. Since Djy1 = m(D; +d) +d
and since we can assume that m > 2, the lemma follows. O



4.2 The Reduction Preserves Optimality

In this section we will show how our reduction maps solutions of the TC-instance
f(I) to solutions of the SC-instance I. We prove that optimum solutions are
mapped to optimum solutions by showing each of both directions in a lemma.

Lemma 6. If there exists a feasible solution of the SC-instance I with k sets,
then there erists a feasible solution of the TC-instance f(I) with k + 4 guards.

Proof. For each set s; in the solution of the SC-instance, place a guard at
height h at point s;, and place four additional guards at height & at the points
Py, Py, P|, Pj. O

Lemma 7. If there exists a feasible solution of the TC-instance f(I) with k+4
guards, then there exists a feasible solution of the SC-instance I with k sets.

Proof. We describe the function g that maps a solution for TC to a solution
for SC. Given a solution of the TC-instance f(I), proceed as follows: Move the
guard that covers point A (at height 0) of the ear at P; (see Fig. 2) to P;. For
the remaining three ears, proceed accordingly.

Observe that a guard that covers the spike of some element e; must lie in
a cone that leads from this spike to some point s;. For each spike, there must
be at least one guard that completely covers the spike, since the spike is one
triangle in the terrain. Move each guard that lies in only one cone (i.e. not in
an intersection area of several cones) to the endpoint s; of the cone. Move all
guards that lie in an area where at least two cones intersect and that are below
the barrier line y = b (or above the barrier line y = 2yo — b) to the endpoint of
s; of any of the intersecting cones.

For guards that lie in an intersection of two cones from different elements
€4, €r, proceed as follows: Note that in this case we have one guard available
to cover two elements. Determine how the spikes ej and e; of the mirror image
are covered. If they are covered by a guard that lies in an intersection of two
cones from e; and e;, we have two guards available to cover two elements and
the problem is resolved by moving one of the two guards available to any s;
of which e, is a member, and by moving the other guard to any s; of which
e, is a member. If €/ is covered by a guard that lies in an intersection of the
two cones of eﬁl and some €, and if €/, is also covered by a guard at some s;,
then there are four guards available to cover four elements and the problem is
resolved by moving the available guards to appropriate s;’s. If €/, is only covered
by a guard that lies in the intersection of two cones of eﬁl and some €', that is
not covered by a guard at any s; and if e/, is only covered by a guard that lies in
the intersection of two cones of e/ and some €/, that is not covered by a guard at
any s;, then we let M’ = {¢,r} and determine how the mirror images of €, and
el,, which are e, and e,s, are covered. If they are covered by a guard that lies in
the intersection of two cones of e, and e,r, then we have four guards available to
cover four elements and the problem is resolved by moving the available guards.
If e, is covered by a guard that lies in an intersection of two cones of e, and



some ey and if egn is also covered by a guard at some s; or if ¢’/ € M’, then
we have five guards available to cover five elements and the problem is resolved
by moving the available guards. If e}, is only covered by a guard that lies in the
intersection of two cones of €/, and some eﬁl,, that is not covered by a guard at
any s; and if €, is only covered by a guard that lies in the intersection of two
cones of e/, and some e, that is not covered by a guard at any s;, and if neither
g"” nor r" are in M’, then we add ¢’ and 7’ to M’ and proceed accordingly for
the mirror images of e, and e,~, which are eﬁl,, and el,,. This procedure will
stop after n/2 iterations at the latest, since two indices are added to M’ in each
step. After n/2 steps, the number of guards available will be greater or equal to
the number of elements to be covered.

Guards that lie inside the polygon but outside the cones cannot cover any
spikes completely and are therefore removed. Guards that lie outside the polygon
are also removed.

This rearrangement of guards correctly guards the terrain without increasing
the number of guards. A solution for the SC-instance can be determined by
including set s; in the SC solution if and only if there is a guard at point s;. O

Lemmas 6 and 7 establish the following theorem:

Theorem 1. An optimum solution of the SC-instance I contains k sets, if and
only if an optimum solution of the TC-instance f(I) contains k + 4 guards.

The description of the function g also shows that we are able to efficiently find
an optimum solution of the SC-instance [, if we are given an optimum solution

of the TC-instance f(I).

4.3 The Reduction is Polynomial

Note that d, d’, yo, h, b are all constants in our reduction. The values for ¥’ and for
all D; are computable in polynomial time and can be expressed with O(nlogm)
bits. Therefore, the function f runs in time polynomial in the size of the input
SC-instance, since it only produces a polynomial number of triangles from which
each corner can be computed in polynomial time and each corner takes at most
O(nlogm) bits to be expressed. Tt is obvious that the function g runs in polyno-
mial time, since it only involves moving around a polynomial number of guards.
If the number of guards is super-polynomial, we have an immediate transforma-
tion by selecting every set in the SC-instance. It takes polynomial time to move
each guard, since it needs to be determined in which cone(s) a guard lies.

The polynomiality of the reduction and Theorem 1 establish the following
corollary:

Corollary 1. TERRAIN COVER is N P-hard.

5 An Inapproximability Result

In order to get a strong inapproximability result, we take advantage of a property
of the SC-instances produced in the reduction in [4], used to prove an optimum
inapproximability result for SC.

10



Lemma 8. Let N be the number of elements and let M be the number of sets
in any SC-instance produced by the reduction in [{]. Then M < N° holds.

Proof. N = mR = m(5n)" according to and adopting the notation of [4]. There
are k provers Each of them can be asked () = ns (5 ) questions. An answer
contains 5 + %l = 21 bits, therefore there are 2% possible answers for each
question. Since for each prover and each question/answer-pair a set is added,
there are M = k- Q- 2% sets. We prove that there is a constant ¢ such that N* >
M, which is equivalent to ¢ > 8™ "\where log denotes the base 2 logarithm.

log N ?
logM _  logk+logQ+2l 5n 5n2\ L
To do so, observe that Tog N = Togm i Tog 5 Togr" Since ) = n2( 3 )2 = (%)%,

t logM _ logk+Llog 241logn+2I
logN = logm+llogb+ilogn

¢ > 0 with m < n¢ for large enough values of [. Since k < [ we get %i% =

we ge . Since m = n®® | there must be a constant

logk L 11og54] 2 . . .
Ut 5 log S+lognt2) < 1t1+24logn Gince n is the number of variables in the

I(clogn+logb+logn) — logn
input instance of 5-OCCURRENCE-3-SAT, we can assume n > 2. Therefore, we
log M -
get B~ Tos N < 5. O

Now consider only those SC-instances that are produced in the reduction
in [4] and their corresponding TC-instances. Then, an approximation ratio of
(1 —¢€)Inn for any € > 0 cannot be guaranteed by a polynomial algorithm for
those SC-instances unless NP C TIME(nO(IOgIOg”)), since this would imply
that 5-OCCURRENCE-3-SAT could be solved efficiently.

Theorem 2. For all SC-instances I produced in the reduction in [4] and their
corresponding TC-instances f(I), there is a constant ¢ > 0 such that, if TC
for all considered instances can be approximated by a polynomial algorithm with
an approximation ratio better than c¢(1 — €)ln|f(I)| for any € > 0, then SC for
all considered instances can be approrimated with an approximation ratio better
than (1 — €) Inn, where n is the number of elements in the SC-instance.

Proof. Tf TC can be approximated with ratio better than ¢(1 —€) In|f(I)|, then
we can find an approximate solution A’ for each TC-instance that satisfies

% < ¢(l —€)In|f(I)|, where OPT' is an optimum solution of the TC-

instance. Let A = g(A’) be the corresponding approximate solution for the SC-
instance and let OPT = g(OPT") be the optimum solution for the SC-instance.
Because of Theorem 1 and the description of the function g, |A'| = |A] + 4

and |OPT'| = |OPT|+ 4. We have ml’;l#-l'lizl <c¢(l—c¢) ln|f( )| and therefore
_14]

opr < ¢l =) |f(D]+ iz (el = ) n[f(D)]) = gpzy- With [OPT] > 1,
we get |O|’;|T| < 5(c(1 — €)In|f(I)]) We need to express the number of trian-
gles |f(I)| of the TC-instance through the number of elements n in the SC-
instance. Observe that the terrain of the TC-instance can always be triangu-
lated such that the number of triangles is O(nm). Therefore, |f(I)| < nmy for
some constant 7 Because we can assume y < n and because of Lemma 8, we
get |f(I)| < nn®n = n”. (Note that if we had not restricted the set of possible
SC-instances, then m = 2" would be possible and we would get a much weaker

result.) Therefore <5%7¢(l—¢)lnn=35c(l—¢€)lnn. Thus, ¢ = L. D

1Al
» TOPT] 35
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Thus, if TC could be approximated with a ratio 13_56 In|f(I)], then SC could

be approximated with a ratio (1 — ¢)Inn for any € > 0. The contraposition of

this sentence establishes our main result. Since SC cannot be approximated with
a ratio (1 — €) Inn according to [4], we get:

Theorem 3. T'C cannot be approxzimated by a polynomial time algorithm with
an approzimation ratio of 1356 Inn for any € > 0, where n is the number of
triangles, unless NP C TIM E(nC{loslogn)y,

6 Conclusion

Theorem 3 together with our approximation algorithm with ratio Inn 4 1 set-
tles the approximability of TERRAIN COVER up to a constant factor. It shows
that TERRAIN COVER belongs to the relatively small family of N P-optimization
problems with an approximation threshold of a non-trivial nature. Unfortunately,
the approximation algorithm has an excessive running time and excessive space
requirements, far too much for practical purposes if we take into account that
the solution obtained might be far off the optimum. Therefore, it remains open
how to solve the TERRAIN COVER problem in a practical situation. Qur inap-
proximability result carries over to the problem of guarding a 2.5-dimensional
terrain with guards on the terrain. As an aside, note that the restriction that
each triangle must be covered completely by a single guard can be dropped with-
out any consequences for the inapproximability result [3]. In that case, however,
the proposed approximation algorithm cannot be applied.
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